Addition of High-inclination, High-eccentricity Orbit Satellites to Improve QZSS Performance

IF 0.7 4区 工程技术 Q4 ENGINEERING, AEROSPACE Transactions of the Japan Society for Aeronautical and Space Sciences Pub Date : 2023-01-01 DOI:10.2322/tjsass.66.244
Jiyeon WOO, JinHyeok JANG, Dana PARK, Sangkyung SUNG, Young Jae LEE
{"title":"Addition of High-inclination, High-eccentricity Orbit Satellites to Improve QZSS Performance","authors":"Jiyeon WOO, JinHyeok JANG, Dana PARK, Sangkyung SUNG, Young Jae LEE","doi":"10.2322/tjsass.66.244","DOIUrl":null,"url":null,"abstract":"At present, Global Navigation Satellite System (GNSS) satellites operate in medium Earth orbits (MEOs), geostationary orbits (GEOs), or inclined geosynchronous orbits (IGSOs). The QZSS consists of GEO and IGSO satellites. When we considering the QZSS skyplot in Japan and its surrounding areas, there are no satellites in the northern sky. This results in a geometric placement imbalance, and thereby, causes position errors. The fundamental method to solve this problem is to position a satellite in the vacant northern area. Therefore, in this research, the addition of navigation satellites with a high-inclination, high-eccentricity orbit (a new type of orbit) is proposed. The vacant northern area can be filled effectively by adding a satellite using this orbit. Three satellites with this orbit were added to the QZSS in a simulation. Thereby, satellites were positioned effectively in the vacant northern area of the skyplot for Tokyo and Seoul. In addition, the improvement in performance was verified quantitatively through Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP). Accordingly, the addition of a satellite with a high-inclination, high-eccentricity orbit to the QZSS would enable more accurate positioning in Japan and its surrounding areas.","PeriodicalId":54419,"journal":{"name":"Transactions of the Japan Society for Aeronautical and Space Sciences","volume":"19 1","pages":"0"},"PeriodicalIF":0.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transactions of the Japan Society for Aeronautical and Space Sciences","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2322/tjsass.66.244","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

At present, Global Navigation Satellite System (GNSS) satellites operate in medium Earth orbits (MEOs), geostationary orbits (GEOs), or inclined geosynchronous orbits (IGSOs). The QZSS consists of GEO and IGSO satellites. When we considering the QZSS skyplot in Japan and its surrounding areas, there are no satellites in the northern sky. This results in a geometric placement imbalance, and thereby, causes position errors. The fundamental method to solve this problem is to position a satellite in the vacant northern area. Therefore, in this research, the addition of navigation satellites with a high-inclination, high-eccentricity orbit (a new type of orbit) is proposed. The vacant northern area can be filled effectively by adding a satellite using this orbit. Three satellites with this orbit were added to the QZSS in a simulation. Thereby, satellites were positioned effectively in the vacant northern area of the skyplot for Tokyo and Seoul. In addition, the improvement in performance was verified quantitatively through Horizontal Dilution of Precision (HDOP) and Vertical Dilution of Precision (VDOP). Accordingly, the addition of a satellite with a high-inclination, high-eccentricity orbit to the QZSS would enable more accurate positioning in Japan and its surrounding areas.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
增加高倾角、高偏心轨道卫星,提高QZSS性能
目前,全球导航卫星系统(GNSS)卫星在中地球轨道(meo)、地球静止轨道(geo)和倾斜地球同步轨道(igso)上运行。QZSS由GEO和IGSO卫星组成。当我们考虑日本及其周边地区的QZSS天际线时,北方天空没有卫星。这导致几何位置不平衡,从而导致位置误差。解决这一问题的根本方法是在空旷的北方地区定位卫星。因此,本研究提出了一种新型的高倾角、高偏心轨道导航卫星的加入。通过在这一轨道上增加一颗卫星,可以有效地填补北方的空白区域。在模拟中,将该轨道的三颗卫星添加到QZSS中。因此,卫星被有效地定位在东京和首尔空的北部地区。此外,通过水平稀释精度(HDOP)和垂直稀释精度(VDOP)定量验证了性能的提高。因此,在QZSS中增加一颗高倾角、高偏心轨道的卫星将使日本及其周边地区的定位更加精确。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.80
自引率
0.00%
发文量
18
审稿时长
>12 weeks
期刊介绍: Information not localized
期刊最新文献
Acknowledgments to Associate Editors Abstracts of the Papers Published in Journal of the Japan Society for Aeronautical and Space Sciences (Vol. 71, No. 6, Dec. 2023) Abstracts of the Papers Published in Journal of the Japan Society for Aeronautical and Space Sciences (Vol. 70, No. 6, Dec. 2022) Analysis of Rotorcraft Vibration Reduction Using a Center-of-Gravity Offset Investigation on Applying an InGaN Photocathode with Negative Electron Affinity for Electric Propulsion
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1