{"title":"Simulation and optimization of Lar Dam reservoir storage under climate change conditions","authors":"Hediyeh Sadeghijou, Amirpouya Sarraf, Hassan Ahmadi","doi":"10.2166/wcc.2023.225","DOIUrl":null,"url":null,"abstract":"Abstract In this research, the impact of climate change in the next 15 years (2036–2022) in the (LarDam) area has been investigated. The results showed that in the case of climate change under scenarios RCP2.6, RCP4.5, RCP8.5, the maximum temperature and the minimum temperature have increased by5, 5.23, 6.2% and 3.5, 5.6, 5.17%, respectively, and the amount of precipitation increased by 8.55, 9.5, 13%, respectively. Also, the highest rainfall will be in 2031 and the lowest will be in 2036. Then, based on the intermediate state of the scenarios, i.e. RCP4.5 scenario, the amount of runoff was obtained and the reliability index was calculated according to the upstream runoff of Lar Dam and downstream needs for drinking, agriculture, and environment. The simulation was also performed in the WEAP model. The obtained reliability showed that the highest reliability was 86.60% of the agriculture needs in the WEAP model, and by using the optimization of a honey badger and harmonic search algorithms, it was found that the reliability is approximately 5.06 and 1.73% higher than the reliability of the simulation, respectively. Moreover, in comparison with the optimization algorithms, due to the smaller value of the objective function of the honey badger algorithm and the greater reliability of this algorithm in optimizing downstream needs, it can be concluded that the performance of this algorithm was better than the harmonic search algorithm. The honey badger algorithm has a faster calculation speed than the harmony search algorithm with less execution time.","PeriodicalId":49150,"journal":{"name":"Journal of Water and Climate Change","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2023.225","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"WATER RESOURCES","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract In this research, the impact of climate change in the next 15 years (2036–2022) in the (LarDam) area has been investigated. The results showed that in the case of climate change under scenarios RCP2.6, RCP4.5, RCP8.5, the maximum temperature and the minimum temperature have increased by5, 5.23, 6.2% and 3.5, 5.6, 5.17%, respectively, and the amount of precipitation increased by 8.55, 9.5, 13%, respectively. Also, the highest rainfall will be in 2031 and the lowest will be in 2036. Then, based on the intermediate state of the scenarios, i.e. RCP4.5 scenario, the amount of runoff was obtained and the reliability index was calculated according to the upstream runoff of Lar Dam and downstream needs for drinking, agriculture, and environment. The simulation was also performed in the WEAP model. The obtained reliability showed that the highest reliability was 86.60% of the agriculture needs in the WEAP model, and by using the optimization of a honey badger and harmonic search algorithms, it was found that the reliability is approximately 5.06 and 1.73% higher than the reliability of the simulation, respectively. Moreover, in comparison with the optimization algorithms, due to the smaller value of the objective function of the honey badger algorithm and the greater reliability of this algorithm in optimizing downstream needs, it can be concluded that the performance of this algorithm was better than the harmonic search algorithm. The honey badger algorithm has a faster calculation speed than the harmony search algorithm with less execution time.
期刊介绍:
Journal of Water and Climate Change publishes refereed research and practitioner papers on all aspects of water science, technology, management and innovation in response to climate change, with emphasis on reduction of energy usage.