cellstruct: Metrics scores to quantify the biological preservation between two embeddings

Jui Wan Loh, John F Ouyang
{"title":"cellstruct: Metrics scores to quantify the biological preservation between two embeddings","authors":"Jui Wan Loh, John F Ouyang","doi":"10.1101/2023.11.13.566337","DOIUrl":null,"url":null,"abstract":"Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"45 8","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.13.566337","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Single-cell transcriptomics (scRNA-seq) is extensively applied in uncovering biological heterogeneity. There are different dimensionality reduction techniques, but it is unclear which method works best in preserving biological information when creating a two-dimensional embedding. Therefore, we implemented cellstruct, which calculates three metrics scores to quantify the global or local biological similarity between a two-dimensional and its corresponding higher-dimensional PCA embeddings at either single-cell or cluster level. These scores pinpoint cell populations with low biological information preservation, in addition to visualizing the cell-cell or cluster-cluster relationships in the PCA embedding. Two study cases illustrate the usefulness of cellstruct in exploratory data analysis.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
细胞结构:测量分数以量化两个嵌入之间的生物保存
单细胞转录组学(scRNA-seq)广泛应用于揭示生物异质性。有不同的降维技术,但不清楚哪种方法在创建二维嵌入时能最好地保存生物信息。因此,我们实现了cellstruct,它计算三个度量分数来量化二维及其相应的高维PCA嵌入在单细胞或聚类水平上的全局或局部生物相似性。除了在PCA嵌入中可视化细胞-细胞或簇-簇关系外,这些分数还精确定位了具有低生物信息保存的细胞群。两个研究案例说明了细胞结构在探索性数据分析中的有用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Exposure toPseudomonas spp.increasesAnopheles gambiaeinsecticide resistance in a population-dependent manner Impaired migration and metastatic spread of human melanoma by a novel small molecule targeting the transmembrane domain of death receptor p75NTR Transcriptomic reprogramming screen identifies SRSF1 as rejuvenation factor Cingulate cortex facilitates auditory perception under challenging listening conditions Extreme distributions in the preconfigured developing brain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1