{"title":"Disentangling the Computational Complexity of Network Untangling","authors":"Vincent Froese, Pascal Kunz, Philipp Zschoche","doi":"10.1007/s00224-023-10150-y","DOIUrl":null,"url":null,"abstract":"Abstract We study the network untangling problem introduced by Rozenshtein et al. (Data Min. Knowl. Disc. 35(1), 213–247, 2021), which is a variant of Vertex Cover on temporal graphs–graphs whose edge set changes over discrete time steps. They introduce two problem variants. The goal is to select at most k time intervals for each vertex such that all time-edges are covered and (depending on the problem variant) either the maximum interval length or the total sum of interval lengths is minimized. This problem has data mining applications in finding activity timelines that explain the interactions of entities in complex networks. Both variants of the problem are NP-hard. In this paper, we initiate a multivariate complexity analysis involving the following parameters: number of vertices, lifetime of the temporal graph, number of intervals per vertex, and the interval length bound. For both problem versions, we (almost) completely settle the parameterized complexity for all combinations of those four parameters, thereby delineating the border of fixed-parameter tractability.","PeriodicalId":22832,"journal":{"name":"Theory of Computing Systems","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Theory of Computing Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1007/s00224-023-10150-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"COMPUTER SCIENCE, THEORY & METHODS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract We study the network untangling problem introduced by Rozenshtein et al. (Data Min. Knowl. Disc. 35(1), 213–247, 2021), which is a variant of Vertex Cover on temporal graphs–graphs whose edge set changes over discrete time steps. They introduce two problem variants. The goal is to select at most k time intervals for each vertex such that all time-edges are covered and (depending on the problem variant) either the maximum interval length or the total sum of interval lengths is minimized. This problem has data mining applications in finding activity timelines that explain the interactions of entities in complex networks. Both variants of the problem are NP-hard. In this paper, we initiate a multivariate complexity analysis involving the following parameters: number of vertices, lifetime of the temporal graph, number of intervals per vertex, and the interval length bound. For both problem versions, we (almost) completely settle the parameterized complexity for all combinations of those four parameters, thereby delineating the border of fixed-parameter tractability.
期刊介绍:
TOCS is devoted to publishing original research from all areas of theoretical computer science, ranging from foundational areas such as computational complexity, to fundamental areas such as algorithms and data structures, to focused areas such as parallel and distributed algorithms and architectures.