{"title":"Optimal transportation for electrical impedance tomography","authors":"Gang Bao, Yixuan Zhang","doi":"10.1090/mcom/3919","DOIUrl":null,"url":null,"abstract":"This work establishes a framework for solving inverse boundary problems with the geodesic-based quadratic Wasserstein distance (<inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper W 2\"> <mml:semantics> <mml:msub> <mml:mi>W</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>2</mml:mn> </mml:mrow> </mml:msub> <mml:annotation encoding=\"application/x-tex\">W_{2}</mml:annotation> </mml:semantics> </mml:math> </inline-formula>). A general form of the Fréchet gradient is systematically derived from the optimal transportation (OT) theory. In addition, a fast algorithm based on the new formulation of OT on <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"double-struck upper S Superscript 1\"> <mml:semantics> <mml:msup> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mi mathvariant=\"double-struck\">S</mml:mi> </mml:mrow> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>1</mml:mn> </mml:mrow> </mml:msup> <mml:annotation encoding=\"application/x-tex\">\\mathbb {S}^{1}</mml:annotation> </mml:semantics> </mml:math> </inline-formula> is developed to solve the corresponding optimal transport problem. The computational complexity of the algorithm is reduced to <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:mi>N</mml:mi> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N)</mml:annotation> </mml:semantics> </mml:math> </inline-formula> from <inline-formula content-type=\"math/mathml\"> <mml:math xmlns:mml=\"http://www.w3.org/1998/Math/MathML\" alttext=\"upper O left-parenthesis upper N cubed right-parenthesis\"> <mml:semantics> <mml:mrow> <mml:mi>O</mml:mi> <mml:mo stretchy=\"false\">(</mml:mo> <mml:msup> <mml:mi>N</mml:mi> <mml:mrow class=\"MJX-TeXAtom-ORD\"> <mml:mn>3</mml:mn> </mml:mrow> </mml:msup> <mml:mo stretchy=\"false\">)</mml:mo> </mml:mrow> <mml:annotation encoding=\"application/x-tex\">O(N^{3})</mml:annotation> </mml:semantics> </mml:math> </inline-formula> of the traditional method. Combining with the adjoint-state method, this framework provides a new computational approach for solving the challenging electrical impedance tomography problem. Numerical examples are presented to illustrate the effectiveness of our method.","PeriodicalId":2,"journal":{"name":"ACS Applied Bio Materials","volume":null,"pages":null},"PeriodicalIF":4.6000,"publicationDate":"2023-11-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ACS Applied Bio Materials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1090/mcom/3919","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
This work establishes a framework for solving inverse boundary problems with the geodesic-based quadratic Wasserstein distance (W2W_{2}). A general form of the Fréchet gradient is systematically derived from the optimal transportation (OT) theory. In addition, a fast algorithm based on the new formulation of OT on S1\mathbb {S}^{1} is developed to solve the corresponding optimal transport problem. The computational complexity of the algorithm is reduced to O(N)O(N) from O(N3)O(N^{3}) of the traditional method. Combining with the adjoint-state method, this framework provides a new computational approach for solving the challenging electrical impedance tomography problem. Numerical examples are presented to illustrate the effectiveness of our method.