Carl L McCombe, Alex Wegner, Chenie S. Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Louisa Wirtz, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath
{"title":"Plant pathogenic fungi hijack phosphate starvation signaling with conserved enzymatic effectors","authors":"Carl L McCombe, Alex Wegner, Chenie S. Zamora, Florencia Casanova, Shouvik Aditya, Julian R Greenwood, Louisa Wirtz, Samuel de Paula, Eleanor England, Sascha Shang, Daniel J Ericsson, Ely Oliveira-Garcia, Simon J Williams, Ulrich Schaffrath","doi":"10.1101/2023.11.14.566975","DOIUrl":null,"url":null,"abstract":"Phosphate availability modulates plant immune function and regulates interactions with beneficial, phosphate-providing, microbes. Here, we describe the hijacking of plant phosphate sensing by a family of Nudix hydrolase effectors from pathogenic Magnaporthe oryzae and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze inositol pyrophosphates, a molecule used by plants to monitor phosphate status and regulate starvation responses. In M. oryzae , gene deletion and complementation experiments reveal that the enzymatic activity of a Nudix effector significantly contributes to pathogen virulence. Further, we show that this conserved effector protein family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, utilized by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.","PeriodicalId":486943,"journal":{"name":"bioRxiv (Cold Spring Harbor Laboratory)","volume":"36 11","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"bioRxiv (Cold Spring Harbor Laboratory)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1101/2023.11.14.566975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Phosphate availability modulates plant immune function and regulates interactions with beneficial, phosphate-providing, microbes. Here, we describe the hijacking of plant phosphate sensing by a family of Nudix hydrolase effectors from pathogenic Magnaporthe oryzae and Colletotrichum fungi. Structural and enzymatic analyses of the Nudix effector family demonstrate that they selectively hydrolyze inositol pyrophosphates, a molecule used by plants to monitor phosphate status and regulate starvation responses. In M. oryzae , gene deletion and complementation experiments reveal that the enzymatic activity of a Nudix effector significantly contributes to pathogen virulence. Further, we show that this conserved effector protein family induces phosphate starvation signaling in plants. Our study elucidates a molecular mechanism, utilized by multiple phytopathogenic fungi, that manipulates the highly conserved plant phosphate sensing pathway to exacerbate disease.