{"title":"KGNav: A Knowledge Graph Navigational Visual Query System","authors":"Xiang Wang, Xin Wang, Zhaozhuo Li, Dong Han","doi":"10.14778/3611540.3611592","DOIUrl":null,"url":null,"abstract":"Visual query is a vital technique for comprehending and analyzing knowledge graphs, which provides an effective method to lower the barrier of querying knowledge graphs for non-professional users. Nevertheless, visual query techniques for knowledge graphs and ontologies that have emerged in recent years cannot bridge the gap between global information provided by the knowledge graph schema and underlying data of knowledge graph. Thus it cannot fully exploit the global information to navigate users for querying knowledge graphs. This demonstration showcases KGNav, a Knowledge Graph Navigational visual query system. KGNav (1) redefines the minimal unit of operation to abstract the conceptual hierarchy, i.e., Knowledge Graph Schema, in the domain from the original knowledge graph in an offline semi-automatic way through the equivalence relations between these units; it also (2) provides a series of operators and an interactive GUI to capture user query intentions, guiding users to explore the Knowledge Graph Schema to achieve in-depth analysis of knowledge graphs. We will demonstrate the capability of KGNav in reducing tedious queries, enabling users to swiftly grasp the structure of the knowledge graph, and performing queries through several fundamental scenarios.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"8 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611592","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Visual query is a vital technique for comprehending and analyzing knowledge graphs, which provides an effective method to lower the barrier of querying knowledge graphs for non-professional users. Nevertheless, visual query techniques for knowledge graphs and ontologies that have emerged in recent years cannot bridge the gap between global information provided by the knowledge graph schema and underlying data of knowledge graph. Thus it cannot fully exploit the global information to navigate users for querying knowledge graphs. This demonstration showcases KGNav, a Knowledge Graph Navigational visual query system. KGNav (1) redefines the minimal unit of operation to abstract the conceptual hierarchy, i.e., Knowledge Graph Schema, in the domain from the original knowledge graph in an offline semi-automatic way through the equivalence relations between these units; it also (2) provides a series of operators and an interactive GUI to capture user query intentions, guiding users to explore the Knowledge Graph Schema to achieve in-depth analysis of knowledge graphs. We will demonstrate the capability of KGNav in reducing tedious queries, enabling users to swiftly grasp the structure of the knowledge graph, and performing queries through several fundamental scenarios.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.