Christoph Brücke, Philipp Härtling, Rodrigo D Escobar Palacios, Hamesh Patel, Tilmann Rabl
{"title":"TPCx-AI - An Industry Standard Benchmark for Artificial Intelligence and Machine Learning Systems","authors":"Christoph Brücke, Philipp Härtling, Rodrigo D Escobar Palacios, Hamesh Patel, Tilmann Rabl","doi":"10.14778/3611540.3611554","DOIUrl":null,"url":null,"abstract":"Artificial intelligence (AI) and machine learning (ML) techniques have existed for years, but new hardware trends and advances in model training and inference have radically improved their performance. With an ever increasing amount of algorithms, systems, and hardware solutions, it is challenging to identify good deployments even for experts. Researchers and industry experts have observed this challenge and have created several benchmark suites for AI and ML applications and systems. While they are helpful in comparing several aspects of AI applications, none of the existing benchmarks measures end-to-end performance of ML deployments. Many have been rigorously developed in collaboration between academia and industry, but no existing benchmark is standardized. In this paper, we introduce the TPC Express Benchmark for Artificial Intelligence (TPCx-AI), the first industry standard benchmark for end-to-end machine learning deployments. TPCx-AI is the first AI benchmark that represents the pipelines typically found in common ML and AI workloads. TPCx-AI provides a full software kit, which includes data generator, driver, and two full workload implementations, one based on Python libraries and one based on Apache Spark. We describe the complete benchmark and show benchmark results for various scale factors. TPCx-AI's core contributions are a novel unified data set covering structured and unstructured data; a fully scalable data generator that can generate realistic data from GB up to PB scale; and a diverse and representative workload using different data types and algorithms, covering a wide range of aspects of real ML workloads such as data integration, data processing, training, and inference.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"7 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611554","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 1
Abstract
Artificial intelligence (AI) and machine learning (ML) techniques have existed for years, but new hardware trends and advances in model training and inference have radically improved their performance. With an ever increasing amount of algorithms, systems, and hardware solutions, it is challenging to identify good deployments even for experts. Researchers and industry experts have observed this challenge and have created several benchmark suites for AI and ML applications and systems. While they are helpful in comparing several aspects of AI applications, none of the existing benchmarks measures end-to-end performance of ML deployments. Many have been rigorously developed in collaboration between academia and industry, but no existing benchmark is standardized. In this paper, we introduce the TPC Express Benchmark for Artificial Intelligence (TPCx-AI), the first industry standard benchmark for end-to-end machine learning deployments. TPCx-AI is the first AI benchmark that represents the pipelines typically found in common ML and AI workloads. TPCx-AI provides a full software kit, which includes data generator, driver, and two full workload implementations, one based on Python libraries and one based on Apache Spark. We describe the complete benchmark and show benchmark results for various scale factors. TPCx-AI's core contributions are a novel unified data set covering structured and unstructured data; a fully scalable data generator that can generate realistic data from GB up to PB scale; and a diverse and representative workload using different data types and algorithms, covering a wide range of aspects of real ML workloads such as data integration, data processing, training, and inference.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.