KG-Roar: Interactive Datalog-Based Reasoning on Virtual Knowledge Graphs

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611609
Luigi Bellomarini, Marco Benedetti, Andrea Gentili, Davide Magnanimi, Emanuel Sallinger
{"title":"KG-Roar: Interactive Datalog-Based Reasoning on Virtual Knowledge Graphs","authors":"Luigi Bellomarini, Marco Benedetti, Andrea Gentili, Davide Magnanimi, Emanuel Sallinger","doi":"10.14778/3611540.3611609","DOIUrl":null,"url":null,"abstract":"Logic-based Knowledge Graphs (KGs) are gaining momentum in academia and industry thanks to the rise of expressive and efficient languages for Knowledge Representation and Reasoning (KRR). These languages accurately express business rules, through which valuable new knowledge is derived. A versatile and scalable backend reasoner, like Vadalog, a state-of-the-art system for logic-based KGs---based on an extension of Datalog---executes the reasoning. In this demo, we present KG-Roar, a web-based interactive development and navigation environment for logical KGs. The system lets the user augment an input graph database with intensional definitions of new nodes and edges and turn it into a KG, via the metaphor of reasoning widgets---user-defined or off-the-shelf code snippets that capture business definitions in the Vadalog language. Then, the user can seamlessly browse the original and the derived nodes and edges within a \"Virtual Knowledge Graph\", which is reasoned upon and generated interactively at runtime, thanks to the scalability and responsiveness of Vadalog. KG-Roar is domain-independent but domain aware, as exploration controls are contextually generated based on the intensional definitions. We walk the audience through KG-Roar showcasing the construction of certain business definitions and putting it into action on a real-world financial KG, from our work with the Bank of Italy.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"47 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611609","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Logic-based Knowledge Graphs (KGs) are gaining momentum in academia and industry thanks to the rise of expressive and efficient languages for Knowledge Representation and Reasoning (KRR). These languages accurately express business rules, through which valuable new knowledge is derived. A versatile and scalable backend reasoner, like Vadalog, a state-of-the-art system for logic-based KGs---based on an extension of Datalog---executes the reasoning. In this demo, we present KG-Roar, a web-based interactive development and navigation environment for logical KGs. The system lets the user augment an input graph database with intensional definitions of new nodes and edges and turn it into a KG, via the metaphor of reasoning widgets---user-defined or off-the-shelf code snippets that capture business definitions in the Vadalog language. Then, the user can seamlessly browse the original and the derived nodes and edges within a "Virtual Knowledge Graph", which is reasoned upon and generated interactively at runtime, thanks to the scalability and responsiveness of Vadalog. KG-Roar is domain-independent but domain aware, as exploration controls are contextually generated based on the intensional definitions. We walk the audience through KG-Roar showcasing the construction of certain business definitions and putting it into action on a real-world financial KG, from our work with the Bank of Italy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于虚拟知识图的交互式数据推理
基于逻辑的知识图(KGs)在学术界和工业界正获得动力,这得益于知识表示和推理(KRR)的表达和高效语言的兴起。这些语言准确地表达了业务规则,通过这些规则可以获得有价值的新知识。一个通用的、可扩展的后端推理器(如Vadalog)执行推理,Vadalog是一种最先进的基于逻辑的KGs系统,基于Datalog的扩展。在这个演示中,我们展示了KG- roar,一个用于逻辑KG的基于web的交互式开发和导航环境。该系统允许用户通过新节点和边的深入定义来增强输入图形数据库,并通过推理小部件的隐喻将其转换为KG,推理小部件是用户定义的或现成的代码片段,用于捕获Vadalog语言中的业务定义。然后,用户可以在“虚拟知识图”中无缝浏览原始和派生的节点和边,由于Vadalog的可扩展性和响应性,该“虚拟知识图”在运行时以交互方式推理和生成。KG-Roar是独立于领域的,但具有领域意识,因为勘探控制是基于内涵定义的上下文生成的。我们通过KG- roar向观众展示了某些业务定义的构建,并将其应用到现实世界的金融KG中,这是我们与意大利银行的合作。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1