Jiashu Zhang, Wen Jiang, Bo Tang, Haoxiang Ma, Lixun Cao, Zhongbin Jiang, Yuanyuan Nie, Fan Wang, Lei Zhang, Yuming Liang
{"title":"CDSBen: Benchmarking the Performance of Storage Services in Cloud-Native Database System at ByteDance","authors":"Jiashu Zhang, Wen Jiang, Bo Tang, Haoxiang Ma, Lixun Cao, Zhongbin Jiang, Yuanyuan Nie, Fan Wang, Lei Zhang, Yuming Liang","doi":"10.14778/3611540.3611549","DOIUrl":null,"url":null,"abstract":"In this work, we focus on the performance benchmarking problem of storage services in cloud-native database systems, which are widely used in various cloud applications. The core idea of these systems is to separate computation and storage in traditional monolithic OLTP databases. Specifically, we first present the characteristics of two representative real I/O workloads at the storage tier of ByteDance's cloud-native database veDB. We then elaborate the limitations of using standard benchmarks such as TPC-C and YCSB to resemble these workloads. To overcome these limitations, we devise a learning-based I/O workload benchmark called CDS-Ben. We demonstrate the superiority of CDSBen by deploying it at ByteDance and showing that its generated I/O traces accurately resemble the real I/O traces in production. Additionally, we verify the accuracy and flexibility of CDSBen by generating a wide range of I/O workloads with different I/O characteristics.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"48 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611549","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In this work, we focus on the performance benchmarking problem of storage services in cloud-native database systems, which are widely used in various cloud applications. The core idea of these systems is to separate computation and storage in traditional monolithic OLTP databases. Specifically, we first present the characteristics of two representative real I/O workloads at the storage tier of ByteDance's cloud-native database veDB. We then elaborate the limitations of using standard benchmarks such as TPC-C and YCSB to resemble these workloads. To overcome these limitations, we devise a learning-based I/O workload benchmark called CDS-Ben. We demonstrate the superiority of CDSBen by deploying it at ByteDance and showing that its generated I/O traces accurately resemble the real I/O traces in production. Additionally, we verify the accuracy and flexibility of CDSBen by generating a wide range of I/O workloads with different I/O characteristics.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.