ChainDash: An Ad-Hoc Blockchain Data Analytics System

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611611
Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin, Ying Yan
{"title":"ChainDash: An Ad-Hoc Blockchain Data Analytics System","authors":"Yushi Liu, Liwei Yuan, Zhihao Chen, Yekai Yu, Zhao Zhang, Cheqing Jin, Ying Yan","doi":"10.14778/3611540.3611611","DOIUrl":null,"url":null,"abstract":"The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"43 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611611","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

The emergence of digital asset applications, driven by Web 3.0 and powered by blockchain technology, has led to a growing demand for blockchain-specific graph analytics to unearth the insights. However, current blockchain data analytics systems are unable to perform efficient ad-hoc graph analytics over both live and past time windows due to their inefficient data synchronization and slow graph snapshots retrieval capability. To address these issues, we propose ChainDash, a blockchain data analytics system that dedicates a highly-parallelized data synchronization component and a retrieval-optimized temporal graph store. By leveraging these techniques, ChainDash supports efficient ad-hoc graph analytics of smart contract activities over arbitrary time windows. In the demonstration, we showcase the interactive visualization interfaces of ChainDash, where attendees will execute customized queries for ad-hoc graph analytics of blockchain data.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
ChainDash: Ad-Hoc区块链数据分析系统
由Web 3.0驱动并由区块链技术提供支持的数字资产应用程序的出现,导致对区块链特定图形分析的需求不断增长,以挖掘见解。然而,当前的区块链数据分析系统由于其低效的数据同步和缓慢的图形快照检索能力,无法在实时和过去的时间窗口上执行有效的临时图形分析。为了解决这些问题,我们提出了ChainDash,这是一个区块链数据分析系统,专门用于高度并行化的数据同步组件和检索优化的时态图存储。通过利用这些技术,ChainDash支持在任意时间窗口内对智能合约活动进行高效的临时图表分析。在演示中,我们展示了ChainDash的交互式可视化界面,与会者将在其中执行自定义查询,以对区块链数据进行临时图形分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1