Real-Time Workload Pattern Analysis for Large-Scale Cloud Databases

IF 2.6 3区 计算机科学 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Proceedings of the Vldb Endowment Pub Date : 2023-08-01 DOI:10.14778/3611540.3611557
Jiaqi Wang, Tianyi Li, Anni Wang, Xiaoze Liu, Lu Chen, Jie Chen, Jianye Liu, Junyang Wu, Feifei Li, Yunjun Gao
{"title":"Real-Time Workload Pattern Analysis for Large-Scale Cloud Databases","authors":"Jiaqi Wang, Tianyi Li, Anni Wang, Xiaoze Liu, Lu Chen, Jie Chen, Jianye Liu, Junyang Wu, Feifei Li, Yunjun Gao","doi":"10.14778/3611540.3611557","DOIUrl":null,"url":null,"abstract":"Hosting database services on cloud systems has become a common practice. This has led to the increasing volume of database workloads, which provides the opportunity for pattern analysis. Discovering workload patterns from a business logic perspective is conducive to better understanding the trends and characteristics of the database system. However, existing workload pattern discovery systems are not suitable for large-scale cloud databases which are commonly employed by the industry. This is because the workload patterns of large-scale cloud databases are generally far more complicated than those of ordinary databases. In this paper, we propose Alibaba Workload Miner (AWM), a real-time system for discovering workload patterns in complicated large-scale workloads. AW M encodes and discovers the SQL query patterns logged from user requests and optimizes the querying processing based on the discovered patterns. First, Data Collection & Preprocessing Module collects streaming query logs and encodes them into high-dimensional feature embeddings with rich semantic contexts and execution features. Next, Online Workload Mining Module separates encoded query by business groups and discovers the workload patterns for each group. Meanwhile, Offline Training Module collects labels and trains the classification model using the labels. Finally, Pattern-based Optimizing Module optimizes query processing in cloud databases by exploiting discovered patterns. Extensive experimental results on one synthetic dataset and two real-life datasets (extracted from Alibaba Cloud databases) show that AW M enhances the accuracy of pattern discovery by 66% and reduce the latency of online inference by 22%, compared with the state-of-the-arts.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"35 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611557","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Hosting database services on cloud systems has become a common practice. This has led to the increasing volume of database workloads, which provides the opportunity for pattern analysis. Discovering workload patterns from a business logic perspective is conducive to better understanding the trends and characteristics of the database system. However, existing workload pattern discovery systems are not suitable for large-scale cloud databases which are commonly employed by the industry. This is because the workload patterns of large-scale cloud databases are generally far more complicated than those of ordinary databases. In this paper, we propose Alibaba Workload Miner (AWM), a real-time system for discovering workload patterns in complicated large-scale workloads. AW M encodes and discovers the SQL query patterns logged from user requests and optimizes the querying processing based on the discovered patterns. First, Data Collection & Preprocessing Module collects streaming query logs and encodes them into high-dimensional feature embeddings with rich semantic contexts and execution features. Next, Online Workload Mining Module separates encoded query by business groups and discovers the workload patterns for each group. Meanwhile, Offline Training Module collects labels and trains the classification model using the labels. Finally, Pattern-based Optimizing Module optimizes query processing in cloud databases by exploiting discovered patterns. Extensive experimental results on one synthetic dataset and two real-life datasets (extracted from Alibaba Cloud databases) show that AW M enhances the accuracy of pattern discovery by 66% and reduce the latency of online inference by 22%, compared with the state-of-the-arts.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
大规模云数据库的实时工作负载模式分析
在云系统上托管数据库服务已经成为一种常见的做法。这导致了数据库工作量的增加,从而为模式分析提供了机会。从业务逻辑的角度发现工作负载模式有助于更好地理解数据库系统的趋势和特征。然而,现有的工作负载模式发现系统并不适合业界普遍采用的大规模云数据库。这是因为大型云数据库的工作负载模式通常比普通数据库复杂得多。在本文中,我们提出了阿里巴巴工作负载挖掘器(AWM),这是一个实时系统,用于发现复杂的大规模工作负载模式。awm编码并发现从用户请求中记录的SQL查询模式,并基于发现的模式优化查询处理。一、数据收集预处理模块采集流查询日志,并将其编码为具有丰富语义上下文和执行特征的高维特征嵌入。接下来,在线工作负载挖掘模块按业务组分离编码查询,并发现每个组的工作负载模式。同时,离线训练模块收集标签并使用标签训练分类模型。最后,基于模式的优化模块通过利用发现的模式来优化云数据库中的查询处理。在一个合成数据集和两个真实数据集(从阿里云数据库中提取)上进行的大量实验结果表明,与最先进的方法相比,awm模式发现的准确性提高了66%,在线推理的延迟降低了22%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Proceedings of the Vldb Endowment
Proceedings of the Vldb Endowment Computer Science-General Computer Science
CiteScore
7.70
自引率
0.00%
发文量
95
期刊介绍: The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.
期刊最新文献
Auditory Brainstem Response in a Child with Mitochondrial Disorder-Leigh Syndrome. Breathing New Life into an Old Tree: Resolving Logging Dilemma of B + -tree on Modern Computational Storage Drives QO-Insight: Inspecting Steered Query Optimizers A Learned Query Rewrite System Demonstrating ADOPT: Adaptively Optimizing Attribute Orders for Worst-Case Optimal Joins via Reinforcement Learning
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1