{"title":"EmbedX: A Versatile, Efficient and Scalable Platform to Embed Both Graphs and High-Dimensional Sparse Data","authors":"Yuanhang Zou, Zhihao Ding, Jieming Shi, Shuting Guo, Chunchen Su, Yafei Zhang","doi":"10.14778/3611540.3611546","DOIUrl":null,"url":null,"abstract":"In modern online services, it is of growing importance to process web-scale graph data and high-dimensional sparse data together into embeddings for downstream tasks, such as recommendation, advertisement, prediction, and classification. There exist learning methods and systems for either high-dimensional sparse data or graphs, but not both. There is an urgent need in industry to have a system to efficiently process both types of data for higher business value, which however, is challenging. The data in Tencent contains billions of samples with sparse features in very high dimensions, and graphs are also with billions of nodes and edges. Moreover, learning models often perform expensive operations with high computational costs. It is difficult to store, manage, and retrieve massive sparse data and graph data together, since they exhibit different characteristics. We present EmbedX, an industrial distributed learning framework from Tencent, which is versatile and efficient to support embedding on both graphs and high-dimensional sparse data. EmbedX consists of distributed server layers for graph and sparse data management, and optimized parameter and graph operators, to efficiently support 4 categories of methods, including deep learning models on high-dimensional sparse data, network embedding methods, graph neural networks, and in-house developed joint learning models on both types of data. Extensive experiments on massive Tencent data and public data demonstrate the superiority of EmbedX. For instance, on a Tencent dataset with 1.3 billion nodes, 35 billion edges, and 2.8 billion samples with sparse features in 1.6 billion dimension, EmbedX performs an order of magnitude faster for training and our joint models achieve superior effectiveness. EmbedX is deployed in Tencent. A/B test on real use cases further validates the power of EmbedX. EmbedX is implemented in C++ and open-sourced at https://github.com/Tencent/embedx.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"82 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611546","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
In modern online services, it is of growing importance to process web-scale graph data and high-dimensional sparse data together into embeddings for downstream tasks, such as recommendation, advertisement, prediction, and classification. There exist learning methods and systems for either high-dimensional sparse data or graphs, but not both. There is an urgent need in industry to have a system to efficiently process both types of data for higher business value, which however, is challenging. The data in Tencent contains billions of samples with sparse features in very high dimensions, and graphs are also with billions of nodes and edges. Moreover, learning models often perform expensive operations with high computational costs. It is difficult to store, manage, and retrieve massive sparse data and graph data together, since they exhibit different characteristics. We present EmbedX, an industrial distributed learning framework from Tencent, which is versatile and efficient to support embedding on both graphs and high-dimensional sparse data. EmbedX consists of distributed server layers for graph and sparse data management, and optimized parameter and graph operators, to efficiently support 4 categories of methods, including deep learning models on high-dimensional sparse data, network embedding methods, graph neural networks, and in-house developed joint learning models on both types of data. Extensive experiments on massive Tencent data and public data demonstrate the superiority of EmbedX. For instance, on a Tencent dataset with 1.3 billion nodes, 35 billion edges, and 2.8 billion samples with sparse features in 1.6 billion dimension, EmbedX performs an order of magnitude faster for training and our joint models achieve superior effectiveness. EmbedX is deployed in Tencent. A/B test on real use cases further validates the power of EmbedX. EmbedX is implemented in C++ and open-sourced at https://github.com/Tencent/embedx.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.