Jiang Li, Qi Xie, Yan Ma, Jian Ma, Kunshang Ji, Yizhong Zhang, Chaojun Zhang, Yixiu Chen, Gangsheng Wu, Jie Zhang, Kaidi Yang, Xinyi He, Qiuyang Shen, Yanting Tao, Haiwei Zhao, Penghui Jiao, Chengfei Zhu, David Qian, Cheng Xu
{"title":"Big Data Analytic Toolkit: A General-Purpose, Modular, and Heterogeneous Acceleration Toolkit for Data Analytical Engines","authors":"Jiang Li, Qi Xie, Yan Ma, Jian Ma, Kunshang Ji, Yizhong Zhang, Chaojun Zhang, Yixiu Chen, Gangsheng Wu, Jie Zhang, Kaidi Yang, Xinyi He, Qiuyang Shen, Yanting Tao, Haiwei Zhao, Penghui Jiao, Chengfei Zhu, David Qian, Cheng Xu","doi":"10.14778/3611540.3611558","DOIUrl":null,"url":null,"abstract":"Query compilation and hardware acceleration are important technologies for optimizing the performance of data processing engines. There have been many works on the exploration and adoption of these techniques in recent years. However, a number of engines still refrain from adopting them because of some reasons. One of the common reasons claims that the intricacies of these techniques make engines too complex to maintain. Another major barrier is the lack of widely accepted architectures and libraries of these techniques, which leads to the adoption often starting from scratch with lots of effort. In this paper, we propose Intel Big Data Analytic Toolkit (BDTK), an open-source C++ acceleration toolkit library for analytical data processing engines. BDTK provides lightweight, easy-to-connect, reusable components with interoperable interfaces to support query compilation and hardware accelerators. The query compilation in BDTK leverages vectorized execution and data-centric code generation to achieve high performance. BDTK could be integrated into different engines and helps them to adapt query compilation and hardware accelerators to optimize performance bottlenecks with less engineering effort.","PeriodicalId":54220,"journal":{"name":"Proceedings of the Vldb Endowment","volume":"47 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-08-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the Vldb Endowment","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14778/3611540.3611558","RegionNum":3,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0
Abstract
Query compilation and hardware acceleration are important technologies for optimizing the performance of data processing engines. There have been many works on the exploration and adoption of these techniques in recent years. However, a number of engines still refrain from adopting them because of some reasons. One of the common reasons claims that the intricacies of these techniques make engines too complex to maintain. Another major barrier is the lack of widely accepted architectures and libraries of these techniques, which leads to the adoption often starting from scratch with lots of effort. In this paper, we propose Intel Big Data Analytic Toolkit (BDTK), an open-source C++ acceleration toolkit library for analytical data processing engines. BDTK provides lightweight, easy-to-connect, reusable components with interoperable interfaces to support query compilation and hardware accelerators. The query compilation in BDTK leverages vectorized execution and data-centric code generation to achieve high performance. BDTK could be integrated into different engines and helps them to adapt query compilation and hardware accelerators to optimize performance bottlenecks with less engineering effort.
期刊介绍:
The Proceedings of the VLDB (PVLDB) welcomes original research papers on a broad range of research topics related to all aspects of data management, where systems issues play a significant role, such as data management system technology and information management infrastructures, including their very large scale of experimentation, novel architectures, and demanding applications as well as their underpinning theory. The scope of a submission for PVLDB is also described by the subject areas given below. Moreover, the scope of PVLDB is restricted to scientific areas that are covered by the combined expertise on the submission’s topic of the journal’s editorial board. Finally, the submission’s contributions should build on work already published in data management outlets, e.g., PVLDB, VLDBJ, ACM SIGMOD, IEEE ICDE, EDBT, ACM TODS, IEEE TKDE, and go beyond a syntactic citation.