Large-Scale Group Decision-Making Method Using Hesitant Fuzzy Rule-Based Network for Asset Allocation

IF 2.4 Q3 COMPUTER SCIENCE, INFORMATION SYSTEMS Information (Switzerland) Pub Date : 2023-10-26 DOI:10.3390/info14110588
Abdul Malek Yaakob, Shahira Shafie, Alexander Gegov, Siti Fatimah Abdul Rahman, Ku Muhammad Naim Ku Khalif
{"title":"Large-Scale Group Decision-Making Method Using Hesitant Fuzzy Rule-Based Network for Asset Allocation","authors":"Abdul Malek Yaakob, Shahira Shafie, Alexander Gegov, Siti Fatimah Abdul Rahman, Ku Muhammad Naim Ku Khalif","doi":"10.3390/info14110588","DOIUrl":null,"url":null,"abstract":"Large-scale group decision-making (LSGDM) has become common in the new era of technology development involving a large number of experts. Recently, in the use of social network analysis (SNA), the community detection method has been highlighted by researchers as a useful method in handling the complexity of LSGDM. However, it is still challenging to deal with the reliability and hesitancy of information as well as the interpretability of the method. For this reason, we introduce a new approach of a Z-hesitant fuzzy network with the community detection method being put into practice for stock selection. The proposed approach was subsequently compared to an established approach in order to evaluate its applicability and efficacy.","PeriodicalId":38479,"journal":{"name":"Information (Switzerland)","volume":"39 6","pages":"0"},"PeriodicalIF":2.4000,"publicationDate":"2023-10-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Information (Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/info14110588","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

Abstract

Large-scale group decision-making (LSGDM) has become common in the new era of technology development involving a large number of experts. Recently, in the use of social network analysis (SNA), the community detection method has been highlighted by researchers as a useful method in handling the complexity of LSGDM. However, it is still challenging to deal with the reliability and hesitancy of information as well as the interpretability of the method. For this reason, we introduce a new approach of a Z-hesitant fuzzy network with the community detection method being put into practice for stock selection. The proposed approach was subsequently compared to an established approach in order to evaluate its applicability and efficacy.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于犹豫模糊规则网络的大规模群体资产配置决策方法
在技术发展的新时代,涉及大量专家的大规模群体决策(LSGDM)已成为一种普遍现象。近年来,在社会网络分析(SNA)的应用中,社区检测方法作为处理LSGDM复杂性的一种有效方法受到了研究人员的重视。然而,在处理信息的可靠性和犹豫性以及方法的可解释性方面仍然存在挑战。为此,我们引入了一种新的z -犹豫模糊网络方法,并将社区检测方法应用于股票选择。随后将提出的方法与已建立的方法进行比较,以评估其适用性和有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Information (Switzerland)
Information (Switzerland) Computer Science-Information Systems
CiteScore
6.90
自引率
0.00%
发文量
515
审稿时长
11 weeks
期刊最新文献
Weakly Supervised Learning Approach for Implicit Aspect Extraction Science Mapping of Meta-Analysis in Agricultural Science An Integrated Time Series Prediction Model Based on Empirical Mode Decomposition and Two Attention Mechanisms Context-Aware Personalization: A Systems Engineering Framework Polarizing Topics on Twitter in the 2022 United States Elections
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1