{"title":"A procedure to harmonize the hydrodynamic force during microbial cultivation in shaking flasks","authors":"Lúcia Chaves Simões, Isabel Oliveira, Anabela Borges, Inês Bezerra Gomes, Manuel Simões","doi":"10.1128/jmbe.00099-23","DOIUrl":null,"url":null,"abstract":"ABSTRACT Shake flask cultivation is a routine technique in microbiology and biotechnology laboratories where cell growth can be affected by the hydrodynamic conditions, which depend on the agitation velocity, shaking diameter, and shake flask size. Liquid agitation is implemented inherently to increase aeration, substrate transfer to the cells, and prevent sedimentation, disregarding the role of hydrodynamics in microbial growth and metabolism. Here, we present a simple approach to help standardize the hydrodynamic forces in orbital shakers to increase the experimental accuracy and reproducibility and give students a better knowledge of the significance of the agitation process in microbial growth.","PeriodicalId":46416,"journal":{"name":"Journal of Microbiology & Biology Education","volume":"52 1","pages":"0"},"PeriodicalIF":1.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Microbiology & Biology Education","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1128/jmbe.00099-23","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"EDUCATION, SCIENTIFIC DISCIPLINES","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACT Shake flask cultivation is a routine technique in microbiology and biotechnology laboratories where cell growth can be affected by the hydrodynamic conditions, which depend on the agitation velocity, shaking diameter, and shake flask size. Liquid agitation is implemented inherently to increase aeration, substrate transfer to the cells, and prevent sedimentation, disregarding the role of hydrodynamics in microbial growth and metabolism. Here, we present a simple approach to help standardize the hydrodynamic forces in orbital shakers to increase the experimental accuracy and reproducibility and give students a better knowledge of the significance of the agitation process in microbial growth.