{"title":"Optimization of removal of toluene from industrial wastewater using RSM Box–Behnken experimental design","authors":"Dariush Jafari, Morteza Esfandyari, Mehdi Mojahed","doi":"10.1186/s42834-023-00189-4","DOIUrl":null,"url":null,"abstract":"Abstract The study is concerned with the adsorption of toluene from real wastewater using granular beads of activated carbon. The adsorbent was analyzed before and after the process using Scanning Electron Microscope analysis to characterize its surface characteristics. The adsorption parameters including solution pH, contact time, dosage of adsorbent, temperature and toluene initial concentration were optimized using response surface methodology (RSM) Box-Behnken experimental design to maximize the toluene adsorption. The adsorption capacity of the adsorbent was 298 mg g −1 and the maximum toluene removal was 99.5% which was achieved in the following optimal conditions: pH: 2, 100 min, adsorbent dosage: 0.7 g L −1 , 40 °C and initial concentration: 30 mg L −1 . The adjusted coefficient of determination of the model was over 0.99 which denotes that the model was quite appropriate and accurate and also it was effective in the optimization of toluene adsorption. Finally, the activated carbon adsorbent was applied to remove toluene from a real sample of wastewater under the optimal operating conditions and the uptake percentage of 96.9% was achieved which was in accordance with the output of the removal of toluene from synthetic wastewater.","PeriodicalId":22130,"journal":{"name":"Sustainable Environment Research","volume":"44 1","pages":"0"},"PeriodicalIF":4.6000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Sustainable Environment Research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1186/s42834-023-00189-4","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ENVIRONMENTAL","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract The study is concerned with the adsorption of toluene from real wastewater using granular beads of activated carbon. The adsorbent was analyzed before and after the process using Scanning Electron Microscope analysis to characterize its surface characteristics. The adsorption parameters including solution pH, contact time, dosage of adsorbent, temperature and toluene initial concentration were optimized using response surface methodology (RSM) Box-Behnken experimental design to maximize the toluene adsorption. The adsorption capacity of the adsorbent was 298 mg g −1 and the maximum toluene removal was 99.5% which was achieved in the following optimal conditions: pH: 2, 100 min, adsorbent dosage: 0.7 g L −1 , 40 °C and initial concentration: 30 mg L −1 . The adjusted coefficient of determination of the model was over 0.99 which denotes that the model was quite appropriate and accurate and also it was effective in the optimization of toluene adsorption. Finally, the activated carbon adsorbent was applied to remove toluene from a real sample of wastewater under the optimal operating conditions and the uptake percentage of 96.9% was achieved which was in accordance with the output of the removal of toluene from synthetic wastewater.
期刊介绍:
The primary goal of Sustainable Environment Research (SER) is to publish high quality research articles associated with sustainable environmental science and technology and to contribute to improving environmental practice. The scope of SER includes issues of environmental science, technology, management and related fields, especially in response to sustainable water, energy and other natural resources. Potential topics include, but are not limited to: 1. Water and Wastewater • Biological processes • Physical and chemical processes • Watershed management • Advanced and innovative treatment 2. Soil and Groundwater Pollution • Contaminant fate and transport processes • Contaminant site investigation technology • Soil and groundwater remediation technology • Risk assessment in contaminant sites 3. Air Pollution and Climate Change • Ambient air quality management • Greenhouse gases control • Gaseous and particulate pollution control • Indoor air quality management and control 4. Waste Management • Waste reduction and minimization • Recourse recovery and conservation • Solid waste treatment technology and disposal 5. Energy and Resources • Sustainable energy • Local, regional and global sustainability • Environmental management system • Life-cycle assessment • Environmental policy instruments