{"title":"Experimental and numerical investigation of the aircraft fuel tank inerting system","authors":"Yi Tu, Chenhui Du, Yu Zeng","doi":"10.1080/14484846.2023.2241192","DOIUrl":null,"url":null,"abstract":"ABSTRACTThe performance of the aircraft fuel tank inerting system is influenced by multiple factors which are strongly coupled. It is a time-consuming process to analyse and evaluate the performance of the system through experiments, and it is difficult to analyse the effects of various factors through limited experimental data. An efficient numerical method is significant for the preliminary design and optimisation of inerting products. In this paper, a generic mathematical model of the hollow-fibre-membrane module (HFMM) was established and the accuracy of the numerical results was verified using experimental data. Based on this mathematical model, a simulation model of the aircraft fuel tank inerting system was developed through cosimulation of AMESim and Matlab/Simulink. The accuracy and applicability of the simulation model for this inerting system were verified using experimental test data. Using this simulation model, the effect of nitrogen-enrich air (NEA) flow rate and aircraft flight altitude on the performance of the inerting system were investigated. The results show that increasing the NEA flow rate contributes to a shorter time for the oxygen concentration to reach a steady state while with a higher stabilised value. The use of a high NEA flow mode is effective in improving the inerting performance during the rapid descent stage.KEYWORDS: Hollow-fibre-membraneair separationfuel inertingefficient numerical methodexperimental study Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsMethodology: Yi Tu. Software and formal analysis: Yi Tu. Experimental test: Chenhui Du and Yu Zeng. Original draft: Yi Tu. Review and editing: Chenhui Du and Yu Zeng.Data availability statementThe data used for the verification of mathematical model of the HFMM is available upon request https://www.techscience.com/fdmp/v18n2/46015Additional informationFundingThis research was funded by Education Department of Hunan Province, China, grant number 21B0618 and 20C1275. National Natural Science Foundation of China, grant number 52275108.Notes on contributorsYi TuYi Tu, born in June 1984, received his doctor's degree from School of Aeronautic Science and Engineering, Beihang University in July 2011. His current research interests include complex pipeline fluid system of aircraft and heat dissipation technology of high heat flux equipment.Chenhui DuChenhui Du, born in May 1989, received her master's degree from Beihang University in January 2014, and his current research interest is the integrated thermal design of aircraftYu ZengYu Zeng, born in May 1982, received his doctor's degree from Beihang University in November 2020, and his current research interests include aircraft environment control system, aircraft fuel inertization system, and integrated thermal design of aircraft.","PeriodicalId":8584,"journal":{"name":"Australian Journal of Mechanical Engineering","volume":"132 1","pages":"0"},"PeriodicalIF":1.3000,"publicationDate":"2023-08-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian Journal of Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/14484846.2023.2241192","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, MECHANICAL","Score":null,"Total":0}
引用次数: 0
Abstract
ABSTRACTThe performance of the aircraft fuel tank inerting system is influenced by multiple factors which are strongly coupled. It is a time-consuming process to analyse and evaluate the performance of the system through experiments, and it is difficult to analyse the effects of various factors through limited experimental data. An efficient numerical method is significant for the preliminary design and optimisation of inerting products. In this paper, a generic mathematical model of the hollow-fibre-membrane module (HFMM) was established and the accuracy of the numerical results was verified using experimental data. Based on this mathematical model, a simulation model of the aircraft fuel tank inerting system was developed through cosimulation of AMESim and Matlab/Simulink. The accuracy and applicability of the simulation model for this inerting system were verified using experimental test data. Using this simulation model, the effect of nitrogen-enrich air (NEA) flow rate and aircraft flight altitude on the performance of the inerting system were investigated. The results show that increasing the NEA flow rate contributes to a shorter time for the oxygen concentration to reach a steady state while with a higher stabilised value. The use of a high NEA flow mode is effective in improving the inerting performance during the rapid descent stage.KEYWORDS: Hollow-fibre-membraneair separationfuel inertingefficient numerical methodexperimental study Disclosure statementNo potential conflict of interest was reported by the authors.Author contributionsMethodology: Yi Tu. Software and formal analysis: Yi Tu. Experimental test: Chenhui Du and Yu Zeng. Original draft: Yi Tu. Review and editing: Chenhui Du and Yu Zeng.Data availability statementThe data used for the verification of mathematical model of the HFMM is available upon request https://www.techscience.com/fdmp/v18n2/46015Additional informationFundingThis research was funded by Education Department of Hunan Province, China, grant number 21B0618 and 20C1275. National Natural Science Foundation of China, grant number 52275108.Notes on contributorsYi TuYi Tu, born in June 1984, received his doctor's degree from School of Aeronautic Science and Engineering, Beihang University in July 2011. His current research interests include complex pipeline fluid system of aircraft and heat dissipation technology of high heat flux equipment.Chenhui DuChenhui Du, born in May 1989, received her master's degree from Beihang University in January 2014, and his current research interest is the integrated thermal design of aircraftYu ZengYu Zeng, born in May 1982, received his doctor's degree from Beihang University in November 2020, and his current research interests include aircraft environment control system, aircraft fuel inertization system, and integrated thermal design of aircraft.