{"title":"Test case generation and history data analysis during optimization in regression testing: An NLP study","authors":"Atulya Gupta, Rajendra Prasad Mahapatra","doi":"10.1080/23311916.2023.2276495","DOIUrl":null,"url":null,"abstract":"The generation of test cases to verify and validate the actions of software or an application, as per the customers’ requirements, is an indispensable activity in software industries. A tester could construct test cases to suffice various objectives, which could be random or task-oriented at times. Most of the time, test cases are generated based on clients’ specifications or requirements. These requirements are structured in natural language, and manual derivation of test cases from such client-stated requirements could be a cumbersome and time-absorbing activity for testers. Until recently, many practitioners have proposed a natural language processing (NLP)-oriented solution to automate or semi-automate the manual process of generating test cases from requirements; nevertheless, such studies imposed a restriction on how the clients should document or represent their requirements. This study, on the contrary, suggested an NLP solution that considers free-format user requirements and applies text pre-processing, a combination of dependency parser and RAKE process, along with a statistical similarity measure and template-based natural language generation (NLG) to translate them into detailed test cases. Apart from test case generation, with the aid of NLP tactics, this study has also proposed a solution for encoding the historical data of test cases into numerical values. Such numerical scores serve as valuable data and create the proper insight for testers during test case optimization.","PeriodicalId":10464,"journal":{"name":"Cogent Engineering","volume":"25 6","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cogent Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/23311916.2023.2276495","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The generation of test cases to verify and validate the actions of software or an application, as per the customers’ requirements, is an indispensable activity in software industries. A tester could construct test cases to suffice various objectives, which could be random or task-oriented at times. Most of the time, test cases are generated based on clients’ specifications or requirements. These requirements are structured in natural language, and manual derivation of test cases from such client-stated requirements could be a cumbersome and time-absorbing activity for testers. Until recently, many practitioners have proposed a natural language processing (NLP)-oriented solution to automate or semi-automate the manual process of generating test cases from requirements; nevertheless, such studies imposed a restriction on how the clients should document or represent their requirements. This study, on the contrary, suggested an NLP solution that considers free-format user requirements and applies text pre-processing, a combination of dependency parser and RAKE process, along with a statistical similarity measure and template-based natural language generation (NLG) to translate them into detailed test cases. Apart from test case generation, with the aid of NLP tactics, this study has also proposed a solution for encoding the historical data of test cases into numerical values. Such numerical scores serve as valuable data and create the proper insight for testers during test case optimization.
期刊介绍:
One of the largest, multidisciplinary open access engineering journals of peer-reviewed research, Cogent Engineering, part of the Taylor & Francis Group, covers all areas of engineering and technology, from chemical engineering to computer science, and mechanical to materials engineering. Cogent Engineering encourages interdisciplinary research and also accepts negative results, software article, replication studies and reviews.