Essential role of CD38 in platelet aggregation through the PKC- mediated internalization and activation

IF 2.2 4区 工程技术 Q3 PHARMACOLOGY & PHARMACY Bioimpacts Pub Date : 2023-09-30 DOI:10.34172/bi.2023.27780
Mazhar Mushtaq, Maira Mahmood, Uzma Jabbar, Uh-Hyun Kim
{"title":"Essential role of CD38 in platelet aggregation through the PKC- mediated internalization and activation","authors":"Mazhar Mushtaq, Maira Mahmood, Uzma Jabbar, Uh-Hyun Kim","doi":"10.34172/bi.2023.27780","DOIUrl":null,"url":null,"abstract":"Introduction: CD38 is a multifunctional enzyme with a potent Ca2+ mobilizing effect, cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). Here, we aimed to demonstrate the role of CD38 in platelets via protein kinase C (PKC)-mediated internalization and activation. Methods: Mouse platelets were used in this study. Thrombin, an agonist of platelet function, provoked a prompt and long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i), resulting from an interplay of multifold Ca2+ mobilizing messengers.The signaling pathway was delineated using different inhibitors and techniques such as platelet aggregation assay, intracellular calcium measurements, immunoprecipitation, immunoblotting, and flow cytometry. Results: We observed a sequential formation of cADPR and NAADP through CD38 activation by PKC of non-muscle myosin heavy chain IIA (MHCIIA), resulting in phospholipase C (PLC) activation in the thrombin-stimulated platelets. These findings reveal that PKC is fundamental in activating CD38 and elicits a physiological response in the murine platelets. Conclusion: PKC is involved in many signaling pathways. Specifically, PKC is involved in the internalization of CD38 via MHCIIA in CD38+/+ wild-type (WT) and CD38-/- knockout mice (KO). CD38 generates calcium-mobilizing agents that act on specific receptors of the calcium stores. Calcium triggered platelet aggregation while serving as a secondary messenger.","PeriodicalId":48614,"journal":{"name":"Bioimpacts","volume":null,"pages":null},"PeriodicalIF":2.2000,"publicationDate":"2023-09-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Bioimpacts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34172/bi.2023.27780","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"PHARMACOLOGY & PHARMACY","Score":null,"Total":0}
引用次数: 0

Abstract

Introduction: CD38 is a multifunctional enzyme with a potent Ca2+ mobilizing effect, cyclic ADP-ribose (cADPR), and nicotinic acid adenine dinucleotide phosphate (NAADP). Here, we aimed to demonstrate the role of CD38 in platelets via protein kinase C (PKC)-mediated internalization and activation. Methods: Mouse platelets were used in this study. Thrombin, an agonist of platelet function, provoked a prompt and long-lasting increase in intracellular Ca2+ concentration ([Ca2+]i), resulting from an interplay of multifold Ca2+ mobilizing messengers.The signaling pathway was delineated using different inhibitors and techniques such as platelet aggregation assay, intracellular calcium measurements, immunoprecipitation, immunoblotting, and flow cytometry. Results: We observed a sequential formation of cADPR and NAADP through CD38 activation by PKC of non-muscle myosin heavy chain IIA (MHCIIA), resulting in phospholipase C (PLC) activation in the thrombin-stimulated platelets. These findings reveal that PKC is fundamental in activating CD38 and elicits a physiological response in the murine platelets. Conclusion: PKC is involved in many signaling pathways. Specifically, PKC is involved in the internalization of CD38 via MHCIIA in CD38+/+ wild-type (WT) and CD38-/- knockout mice (KO). CD38 generates calcium-mobilizing agents that act on specific receptors of the calcium stores. Calcium triggered platelet aggregation while serving as a secondary messenger.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CD38通过PKC介导的内化和激活在血小板聚集中的重要作用
CD38是一种多功能酶,具有强大的Ca2+动员作用,环adp核糖(cADPR)和烟酸腺嘌呤二核苷酸磷酸(NAADP)。在这里,我们旨在通过蛋白激酶C (PKC)介导的内化和激活来证明CD38在血小板中的作用。方法:采用小鼠血小板进行实验。凝血酶是血小板功能的激动剂,引起细胞内Ca2+浓度([Ca2+]i)的迅速和持久的增加,这是由多重Ca2+动员信使的相互作用引起的。使用不同的抑制剂和技术,如血小板聚集测定、细胞内钙测量、免疫沉淀、免疫印迹和流式细胞术,描绘了信号通路。结果:我们观察到,通过PKC激活非肌球蛋白重链IIA (MHCIIA)的CD38,导致凝血酶刺激的血小板中磷脂酶C (PLC)激活,cADPR和NAADP序列形成。这些发现表明PKC是激活CD38的基础,并在小鼠血小板中引发生理反应。结论:PKC参与多种信号通路。具体来说,PKC在CD38+/+野生型(WT)和CD38-/-敲除小鼠(KO)中通过MHCIIA参与CD38的内化。CD38产生钙动员剂,作用于钙储存的特定受体。钙作为次级信使触发血小板聚集。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Bioimpacts
Bioimpacts Pharmacology, Toxicology and Pharmaceutics-Pharmaceutical Science
CiteScore
4.80
自引率
7.70%
发文量
36
审稿时长
5 weeks
期刊介绍: BioImpacts (BI) is a peer-reviewed multidisciplinary international journal, covering original research articles, reviews, commentaries, hypotheses, methodologies, and visions/reflections dealing with all aspects of biological and biomedical researches at molecular, cellular, functional and translational dimensions.
期刊最新文献
The impact of particle size of nanostructured lipid carriers on follicular drug delivery: A comprehensive analysis of mouse and human hair follicle penetration Association of tumour mutation burden with prognosis and its clinical significance in stage III gastric cancer A comprehensive review on alpha-lipoic acid delivery by nanoparticles Systemic nitric oxide metabolites and the chance of pre-diabetes regression to normoglycemia: A 9-year cohort study A human acellular dermal matrix coated with zinc oxide nanoparticles accelerates tendon repair in patients with hand flexor tendon injuries in zone 5 of the hand
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1