{"title":"Targeted co-delivery of paclitaxel and chrysin by hyaluronate/chitosan-coated polymeric nanoparticles for prostate cancer chemotherapy","authors":"Behzad Jamali, Sajjad Jamali, Sevil Vaghefi Moghaddam, Mohsen Firoozrai, Soodabeh Davaran, Fatemeh Abedi","doi":"10.1080/00914037.2023.2277219","DOIUrl":null,"url":null,"abstract":"AbstractChemotherapy is one of the most common therapeutic approaches in most cancers like prostate cancer, which has always faced limitations. The purpose of the present study was to design and prepare the targeted polymeric nanoparticles for the co-delivery of Paclitaxel (PTX) and Chrysin (CHR) to prostate cancer cells to improve the PTX therapeutic efficacy. Through the current research, the surface modification of the PTX/CHR-loaded PCL-PEG-PCL nanoparticles with chitosan and hyaluronic acid (PTX/CHR-PCEC-CS/HA) was successfully performed through the physical adsorption process. SEM results showed that this polymeric NPs had a homogeneous spherical structure. The encapsulation efficiency was 78.6 and 93.28% for CHR and PTX, respectively. It is important to mention that the controlled drug-release behavior of the PTX/CHR-PCEC-CS/HA was also investigated. The results demonstrated that the dual drug-loaded PCEC-CS/HA NPs had a significant effect on reducing the survival of the cancer. Also, the results exhibited that the cytotoxicity of the dual drug-loaded polymeric NPs in the PC3 cell line is significantly higher than in the HUVEC cell line. Based on the findings, the targeted PTX/CHR-PCEC-CS/HA NPs could be employed as a suitable candidate for the effective treatment of the prostate cancer.Keywords: paclitaxelChrysinpolymeric nanoparticlesprostate cancertargeted drug delivery AcknowledgmentsThis project was fulfilled at the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran. We would like to thank the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran for their assistance in this research. Besides, the authors would like to thank the Drug Applied Research Center, Tabriz University of Medical Sciences cooperation in this project.Author contributionsAll authors have given approval to the final version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementNo data was used for the research described in the article.","PeriodicalId":14203,"journal":{"name":"International Journal of Polymeric Materials and Polymeric Biomaterials","volume":"29 3","pages":"0"},"PeriodicalIF":2.5000,"publicationDate":"2023-11-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Polymeric Materials and Polymeric Biomaterials","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/00914037.2023.2277219","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, BIOMATERIALS","Score":null,"Total":0}
引用次数: 0
Abstract
AbstractChemotherapy is one of the most common therapeutic approaches in most cancers like prostate cancer, which has always faced limitations. The purpose of the present study was to design and prepare the targeted polymeric nanoparticles for the co-delivery of Paclitaxel (PTX) and Chrysin (CHR) to prostate cancer cells to improve the PTX therapeutic efficacy. Through the current research, the surface modification of the PTX/CHR-loaded PCL-PEG-PCL nanoparticles with chitosan and hyaluronic acid (PTX/CHR-PCEC-CS/HA) was successfully performed through the physical adsorption process. SEM results showed that this polymeric NPs had a homogeneous spherical structure. The encapsulation efficiency was 78.6 and 93.28% for CHR and PTX, respectively. It is important to mention that the controlled drug-release behavior of the PTX/CHR-PCEC-CS/HA was also investigated. The results demonstrated that the dual drug-loaded PCEC-CS/HA NPs had a significant effect on reducing the survival of the cancer. Also, the results exhibited that the cytotoxicity of the dual drug-loaded polymeric NPs in the PC3 cell line is significantly higher than in the HUVEC cell line. Based on the findings, the targeted PTX/CHR-PCEC-CS/HA NPs could be employed as a suitable candidate for the effective treatment of the prostate cancer.Keywords: paclitaxelChrysinpolymeric nanoparticlesprostate cancertargeted drug delivery AcknowledgmentsThis project was fulfilled at the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran. We would like to thank the Faculty of Pharmacy, Tabriz University of Medical Science, Tabriz, Iran for their assistance in this research. Besides, the authors would like to thank the Drug Applied Research Center, Tabriz University of Medical Sciences cooperation in this project.Author contributionsAll authors have given approval to the final version of the manuscript.Disclosure statementNo potential conflict of interest was reported by the author(s).Data availability statementNo data was used for the research described in the article.
期刊介绍:
International Journal of Polymeric Materials and Polymeric Biomaterials is the official publication of the International Society for Biomedical Polymers and Polymeric Biomaterials (ISBPPB). This journal provides a forum for the publication of peer-reviewed, English language articles and select reviews on all aspects of polymeric materials and biomedical polymers. Being interdisciplinary in nature, this journal publishes extensive contributions in the areas of encapsulation and controlled release technologies to address innovation needs as well.