{"title":"Diffraction-Limited Flat Reflective Microlenses by Plasmonic Photopatterning of Molecular Orientations","authors":"Hao Yu, Miao Jiang, Hai Yun, Youyang Zhu, YongLe Qi, Ziyuan Zhou, IRAKLI CHAGANAVA, Qihuo Wei","doi":"10.1364/josab.503277","DOIUrl":null,"url":null,"abstract":"In this study, we demonstrate that flat reflective microlenses with different f -numbers and focal lengths can be designed by manipulating the Pancharatnam–Berry (PB) phase obtained by light upon reflection from cholesteric liquid crystals and fabricated with high quality using a plasmonic photopatterning technique. We have measured the point-spread functions of these microlenses and show that they are diffraction-limited. An advantage of this approach for fabricating flat micro-optical devices is that it allows for the simultaneous design of diffraction-limited quality and low fabrication cost.","PeriodicalId":17280,"journal":{"name":"Journal of The Optical Society of America B-optical Physics","volume":"75 1","pages":"0"},"PeriodicalIF":1.8000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of The Optical Society of America B-optical Physics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1364/josab.503277","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"OPTICS","Score":null,"Total":0}
引用次数: 0
Abstract
In this study, we demonstrate that flat reflective microlenses with different f -numbers and focal lengths can be designed by manipulating the Pancharatnam–Berry (PB) phase obtained by light upon reflection from cholesteric liquid crystals and fabricated with high quality using a plasmonic photopatterning technique. We have measured the point-spread functions of these microlenses and show that they are diffraction-limited. An advantage of this approach for fabricating flat micro-optical devices is that it allows for the simultaneous design of diffraction-limited quality and low fabrication cost.
期刊介绍:
The Journal of the Optical Society of America B (JOSA B) is a general optics research journal that complements JOSA A. It emphasizes scientific research on the fundamentals of the interaction of light with matter such as quantum optics, nonlinear optics, and laser physics. Topics include:
Advanced Instrumentation and Measurements
Fiber Optics and Fiber Lasers
Lasers and Other Light Sources from THz to XUV
Light-Induced Phenomena
Nonlinear and High Field Optics
Optical Materials
Optics Modes and Structured Light
Optomechanics
Metamaterials
Nanomaterials
Photonics and Semiconductor Optics
Physical Optics
Plasmonics
Quantum Optics and Entanglement
Quantum Key Distribution
Spectroscopy and Atomic or Molecular Optics
Superresolution and Advanced Imaging
Surface Optics
Ultrafast Optical Phenomena
Wave Guiding and Optical Confinement
JOSA B considers original research articles, feature issue contributions, invited reviews and tutorials, and comments on published articles.