The Design of an Efficient Low-Cost FPGA-based Unit for Generation Ultrasound Beamforming

IF 0.6 Q3 MULTIDISCIPLINARY SCIENCES Pertanika Journal of Science and Technology Pub Date : 2023-10-09 DOI:10.47836/pjst.31.6.24
Soufiane Dangoury, Mouncef El marghichi, Mohamed Sadik, Abderrahim Fail
{"title":"The Design of an Efficient Low-Cost FPGA-based Unit for Generation Ultrasound Beamforming","authors":"Soufiane Dangoury, Mouncef El marghichi, Mohamed Sadik, Abderrahim Fail","doi":"10.47836/pjst.31.6.24","DOIUrl":null,"url":null,"abstract":"One of the most critical steps in forming an ultrasound image is beamforming, which determines the nature and shape of the sound waves produced. It allows for generating either sound waves focused on a specific depth in the area to be explored (focused beam) or plane waves. The control of the piezoelectric elements forming the probe causes the difference between these modes. In this paper, we focus on generating the commands for the beamforming transmission for both focused and plane wave techniques. The produced signals of the command were applied to the transducers to achieve the desired sound beam. Eventually, we design and implement the algorithm using a low-cost AlTera DE10-lite development board. The results show that despite not optimizing the hardware, the board was able to generate the necessary signals efficiently with less than 4% as logic elements requirement and used memory of 0% in the most complex and demanding scenario. Given the speed of access they present, we replace the use of memory with registers.","PeriodicalId":46234,"journal":{"name":"Pertanika Journal of Science and Technology","volume":null,"pages":null},"PeriodicalIF":0.6000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pertanika Journal of Science and Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.47836/pjst.31.6.24","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MULTIDISCIPLINARY SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

One of the most critical steps in forming an ultrasound image is beamforming, which determines the nature and shape of the sound waves produced. It allows for generating either sound waves focused on a specific depth in the area to be explored (focused beam) or plane waves. The control of the piezoelectric elements forming the probe causes the difference between these modes. In this paper, we focus on generating the commands for the beamforming transmission for both focused and plane wave techniques. The produced signals of the command were applied to the transducers to achieve the desired sound beam. Eventually, we design and implement the algorithm using a low-cost AlTera DE10-lite development board. The results show that despite not optimizing the hardware, the board was able to generate the necessary signals efficiently with less than 4% as logic elements requirement and used memory of 0% in the most complex and demanding scenario. Given the speed of access they present, we replace the use of memory with registers.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于fpga的高效低成本超声波束形成装置的设计
形成超声图像的最关键步骤之一是波束形成,它决定了所产生声波的性质和形状。它可以产生聚焦在待探测区域特定深度的声波(聚焦光束)或平面波。形成探针的压电元件的控制导致了这些模式之间的差异。本文重点研究了聚焦波和平面波两种波束形成技术的命令生成。命令产生的信号被应用到换能器上,以获得所需的声束。最后,我们使用低成本的AlTera DE10-lite开发板设计并实现了该算法。结果表明,尽管没有对硬件进行优化,但在最复杂和最苛刻的场景下,该电路板能够以低于4%的逻辑元件需求有效地产生必要的信号,并且使用0%的内存。考虑到它们提供的访问速度,我们用寄存器代替内存的使用。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Pertanika Journal of Science and Technology
Pertanika Journal of Science and Technology MULTIDISCIPLINARY SCIENCES-
CiteScore
1.50
自引率
16.70%
发文量
178
期刊介绍: Pertanika Journal of Science and Technology aims to provide a forum for high quality research related to science and engineering research. Areas relevant to the scope of the journal include: bioinformatics, bioscience, biotechnology and bio-molecular sciences, chemistry, computer science, ecology, engineering, engineering design, environmental control and management, mathematics and statistics, medicine and health sciences, nanotechnology, physics, safety and emergency management, and related fields of study.
期刊最新文献
A Review on the Development of Microcarriers for Cell Culture Applications The Compatibility of Cement Bonded Fibreboard Through Dimensional Stability Analysis: A Review Bending Effects on Polyvinyl Alcohol Thin Film for Flexible Wearable Antenna Substrate Mesh Optimisation for General 3D Printed Objects with Cusp-Height Triangulation Approach The Riblet Short-Slot Coupler Using Substrate Integrated Waveguide (SIW) for High-frequency Applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1