Long-Read Sequencing in Blood Group Genetics

IF 1.9 4区 医学 Q3 HEMATOLOGY Transfusion Medicine and Hemotherapy Pub Date : 2023-01-01 DOI:10.1159/000530652
Gian Andri Thun, Morgan Gueuning, Maja Mattle-Greminger
{"title":"Long-Read Sequencing in Blood Group Genetics","authors":"Gian Andri Thun, Morgan Gueuning, Maja Mattle-Greminger","doi":"10.1159/000530652","DOIUrl":null,"url":null,"abstract":"Background: The key advantages of latest third-generation long-read sequencing (TGS) technologies include the ability to resolve long haplotypes and to characterize genomic regions that are challenging to analyze with short-read sequencing. Recent advancements in TGS technologies have significantly improved accuracy, a crucial requirement for the transition from research to diagnostic applications. Summary: In the field of immunohematology, the adoption of TGS is still in its early stages and published applications are scarce. An undeniable utility of TGS in blood group genomics is the ability to resolve ambiguous genotype-phenotype blood group results. In particular, hybrid genes and other large structural variants, as commonly found in the RHD/CE and MNS blood group systems, cause such discrepant results that can hardly be resolved by conventional methods. Long-read sequencing also greatly aids to generate high-standard reference alleles, establish haplotype sequence databases, or could even serve for high-resolution genotyping of all blood groups in parallel. Additionally, TGS holds the potential to close important knowledge gaps in blood group transcriptomics and epigenetics. Key Messages: The aims of this review were to examine the prospects of TGS technologies within the field of immunohematology and to highlight practical applications. Furthermore, we present a comprehensive overview of the existing and emerging wet-laboratory strategies for data generation, as well as a summary on bioinformatic data analysis methods. Finally, we provide an outlook on anticipated advancements in the near future.","PeriodicalId":23252,"journal":{"name":"Transfusion Medicine and Hemotherapy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Transfusion Medicine and Hemotherapy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1159/000530652","RegionNum":4,"RegionCategory":"医学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"HEMATOLOGY","Score":null,"Total":0}
引用次数: 2

Abstract

Background: The key advantages of latest third-generation long-read sequencing (TGS) technologies include the ability to resolve long haplotypes and to characterize genomic regions that are challenging to analyze with short-read sequencing. Recent advancements in TGS technologies have significantly improved accuracy, a crucial requirement for the transition from research to diagnostic applications. Summary: In the field of immunohematology, the adoption of TGS is still in its early stages and published applications are scarce. An undeniable utility of TGS in blood group genomics is the ability to resolve ambiguous genotype-phenotype blood group results. In particular, hybrid genes and other large structural variants, as commonly found in the RHD/CE and MNS blood group systems, cause such discrepant results that can hardly be resolved by conventional methods. Long-read sequencing also greatly aids to generate high-standard reference alleles, establish haplotype sequence databases, or could even serve for high-resolution genotyping of all blood groups in parallel. Additionally, TGS holds the potential to close important knowledge gaps in blood group transcriptomics and epigenetics. Key Messages: The aims of this review were to examine the prospects of TGS technologies within the field of immunohematology and to highlight practical applications. Furthermore, we present a comprehensive overview of the existing and emerging wet-laboratory strategies for data generation, as well as a summary on bioinformatic data analysis methods. Finally, we provide an outlook on anticipated advancements in the near future.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
血型遗传学中的长读测序
背景:最新的第三代长读测序(TGS)技术的主要优势包括能够解析长单倍型和表征短读测序难以分析的基因组区域。TGS技术的最新进展显著提高了准确性,这是从研究向诊断应用过渡的关键要求。摘要:在免疫血液学领域,TGS的应用尚处于早期阶段,已发表的应用较少。TGS在血型基因组学中的一个不可否认的效用是能够解决模棱两可的基因型-表型血型结果。特别是在RHD/CE和MNS血型系统中常见的杂交基因和其他大的结构变异,会导致常规方法难以解决的差异结果。长读测序也极大地有助于产生高标准的参考等位基因,建立单倍型序列数据库,甚至可以为所有血型的高分辨率基因分型提供并行服务。此外,TGS具有填补血型转录组学和表观遗传学重要知识空白的潜力。本综述的目的是研究TGS技术在免疫血液学领域的前景,并强调其实际应用。此外,我们对现有的和新兴的湿实验室数据生成策略进行了全面概述,并对生物信息学数据分析方法进行了总结。最后,我们提供了在不久的将来预期的进展展望。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.00
自引率
9.10%
发文量
47
审稿时长
6-12 weeks
期刊介绍: This journal is devoted to all areas of transfusion medicine. These include the quality and security of blood products, therapy with blood components and plasma derivatives, transfusion-related questions in transplantation, stem cell manipulation, therapeutic and diagnostic problems of homeostasis, immuno-hematological investigations, and legal aspects of the production of blood products as well as hemotherapy. Both comprehensive reviews and primary publications that detail the newest work in transfusion medicine and hemotherapy promote the international exchange of knowledge within these disciplines. Consistent with this goal, continuing clinical education is also specifically addressed.
期刊最新文献
Effect of Water Bath versus Refrigerator Thaw on Cryoprecipitate Fibrinogen and Factor VIII Content Using a Pre-Pooled Plasma Experimental Approach A Novel c.459_460insC Variation in the XK Gene Associated with McLeod Syndrome In vitro Generated Megakaryocytes for the Detection of Human Platelet Antigen-Specific Alloantibodies Effectors of the Future: Universal Chimeric Antigen Receptor Regulation of Blood Group Expression: Another Layer of Complexity to Consider.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1