An enhanced genetic algorithm for computation task offloading in MEC scenario

Jiacheng Zhao, Wenzao Li, Hantao Liu, Peizhen Yu, Hanyun Li, Zhan Wen
{"title":"An enhanced genetic algorithm for computation task offloading in MEC scenario","authors":"Jiacheng Zhao, Wenzao Li, Hantao Liu, Peizhen Yu, Hanyun Li, Zhan Wen","doi":"10.1504/ijwmc.2023.133059","DOIUrl":null,"url":null,"abstract":"The explosive growth of Internet of Things (IoT) and 5G communication technologies has driven the increasing computing demands for wireless devices. Mobile edge computing in the 5G scenario is a promising solution for energy-efficient and low latency applications. However, due to limited bandwidth, the selection of appropriate computing tasks greatly affects the user experience and system performance. Under the wireless bandwidth constraint, the reasonable choice of offloading objects is an NP-hard problem. The genetic algorithm has a great ability to solve this problem, but the performance of the algorithm varies with different scenarios. This paper proposes a task offloading strategy based on an enhanced genetic algorithm for small-scale computing tasks with an ultra-dense terminal distribution. Numerical experiments show that the convergence speed and optimisation effect of the enhanced genetic algorithm are significantly improved compared to the conventional genetic algorithm.","PeriodicalId":53709,"journal":{"name":"International Journal of Wireless and Mobile Computing","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Wireless and Mobile Computing","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1504/ijwmc.2023.133059","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Engineering","Score":null,"Total":0}
引用次数: 0

Abstract

The explosive growth of Internet of Things (IoT) and 5G communication technologies has driven the increasing computing demands for wireless devices. Mobile edge computing in the 5G scenario is a promising solution for energy-efficient and low latency applications. However, due to limited bandwidth, the selection of appropriate computing tasks greatly affects the user experience and system performance. Under the wireless bandwidth constraint, the reasonable choice of offloading objects is an NP-hard problem. The genetic algorithm has a great ability to solve this problem, but the performance of the algorithm varies with different scenarios. This paper proposes a task offloading strategy based on an enhanced genetic algorithm for small-scale computing tasks with an ultra-dense terminal distribution. Numerical experiments show that the convergence speed and optimisation effect of the enhanced genetic algorithm are significantly improved compared to the conventional genetic algorithm.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MEC场景下计算任务卸载的改进遗传算法
物联网(IoT)和5G通信技术的爆炸式增长推动了无线设备日益增长的计算需求。5G场景下的移动边缘计算是一种很有前途的节能低延迟应用解决方案。然而,由于带宽有限,选择合适的计算任务对用户体验和系统性能影响很大。在无线带宽约束下,卸载对象的合理选择是一个np困难问题。遗传算法在解决这一问题上有很强的能力,但算法的性能随场景的不同而不同。针对终端分布超密集的小规模计算任务,提出了一种基于增强遗传算法的任务卸载策略。数值实验表明,与传统遗传算法相比,改进后的遗传算法的收敛速度和优化效果都有显著提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
International Journal of Wireless and Mobile Computing
International Journal of Wireless and Mobile Computing Computer Science-Computer Science (all)
CiteScore
0.80
自引率
0.00%
发文量
76
期刊介绍: The explosive growth of wide-area cellular systems and local area wireless networks which promise to make integrated networks a reality, and the development of "wearable" computers and the emergence of "pervasive" computing paradigm, are just the beginning of "The Wireless and Mobile Revolution". The realisation of wireless connectivity is bringing fundamental changes to telecommunications and computing and profoundly affects the way we compute, communicate, and interact. It provides fully distributed and ubiquitous mobile computing and communications, thus bringing an end to the tyranny of geography.
期刊最新文献
Robust min-norm algorithms for coherent sources DOA estimation based on Toeplitz matrix reconstruction methods The construction of the competency model and its application in talent cultivation Bifurcation analysis of a predator-prey model with volume-filling mechanism An improved resource allocation architecture using swarm intelligence for mm-Wave MIMO communication architecture Compatibility issues of wireless sensor network routing in internet of things applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1