Deep learning-based schemes for singularly perturbed convection-diffusion problems

IF 0.6 4区 数学 Q4 STATISTICS & PROBABILITY Esaim-Probability and Statistics Pub Date : 2023-01-01 DOI:10.1051/proc/202373048
Adrien Beguinet, Virginie Ehrlacher, Roberta Flenghi, Maria Fuente, Olga Mula, Agustin Somacal
{"title":"Deep learning-based schemes for singularly perturbed convection-diffusion problems","authors":"Adrien Beguinet, Virginie Ehrlacher, Roberta Flenghi, Maria Fuente, Olga Mula, Agustin Somacal","doi":"10.1051/proc/202373048","DOIUrl":null,"url":null,"abstract":"Deep learning-based numerical schemes such as Physically Informed Neural Networks (PINNs) have recently emerged as an alternative to classical numerical schemes for solving Partial Differential Equations (PDEs). They are very appealing at first sight because implementing vanilla versions of PINNs based on strong residual forms is easy, and neural networks offer very high approximation capabilities. However, when the PDE solutions are low regular, an expert insight is required to build deep learning formulations that do not incur in variational crimes. Optimization solvers are also significantly challenged, and can potentially spoil the final quality of the approximated solution due to the convergence to bad local minima, and bad generalization capabilities. In this paper, we present an exhaustive numerical study of the merits and limitations of these schemes when solutions exhibit low-regularity, and compare performance with respect to more benign cases when solutions are very smooth. As a support for our study, we consider singularly perturbed convection-diffusion problems where the regularity of solutions typically degrades as certain multiscale parameters go to zero.","PeriodicalId":51249,"journal":{"name":"Esaim-Probability and Statistics","volume":"49 1","pages":"0"},"PeriodicalIF":0.6000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Esaim-Probability and Statistics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1051/proc/202373048","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
引用次数: 0

Abstract

Deep learning-based numerical schemes such as Physically Informed Neural Networks (PINNs) have recently emerged as an alternative to classical numerical schemes for solving Partial Differential Equations (PDEs). They are very appealing at first sight because implementing vanilla versions of PINNs based on strong residual forms is easy, and neural networks offer very high approximation capabilities. However, when the PDE solutions are low regular, an expert insight is required to build deep learning formulations that do not incur in variational crimes. Optimization solvers are also significantly challenged, and can potentially spoil the final quality of the approximated solution due to the convergence to bad local minima, and bad generalization capabilities. In this paper, we present an exhaustive numerical study of the merits and limitations of these schemes when solutions exhibit low-regularity, and compare performance with respect to more benign cases when solutions are very smooth. As a support for our study, we consider singularly perturbed convection-diffusion problems where the regularity of solutions typically degrades as certain multiscale parameters go to zero.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的奇摄动对流扩散问题求解方法
基于深度学习的数值方案,如物理信息神经网络(pinn),最近成为求解偏微分方程(PDEs)的经典数值方案的替代方案。它们乍一看非常吸引人,因为基于强残差形式实现普通版本的pin很容易,而且神经网络提供了非常高的近似能力。然而,当PDE解决方案是低规则时,需要专家洞察力来构建不会导致变分犯罪的深度学习公式。优化求解器也面临着巨大的挑战,并且由于收敛到糟糕的局部最小值和糟糕的泛化能力,可能会破坏近似解的最终质量。在本文中,我们给出了一个详尽的数值研究,当解表现出低正则性时,这些格式的优点和局限性,并比较了相对于更良性的情况下,当解非常光滑时的性能。为了支持我们的研究,我们考虑了奇异摄动对流扩散问题,其中当某些多尺度参数趋于零时,解的正则性通常会退化。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Esaim-Probability and Statistics
Esaim-Probability and Statistics STATISTICS & PROBABILITY-
CiteScore
1.00
自引率
0.00%
发文量
14
审稿时长
>12 weeks
期刊介绍: The journal publishes original research and survey papers in the area of Probability and Statistics. It covers theoretical and practical aspects, in any field of these domains. Of particular interest are methodological developments with application in other scientific areas, for example Biology and Genetics, Information Theory, Finance, Bioinformatics, Random structures and Random graphs, Econometrics, Physics. Long papers are very welcome. Indeed, we intend to develop the journal in the direction of applications and to open it to various fields where random mathematical modelling is important. In particular we will call (survey) papers in these areas, in order to make the random community aware of important problems of both theoretical and practical interest. We all know that many recent fascinating developments in Probability and Statistics are coming from "the outside" and we think that ESAIM: P&S should be a good entry point for such exchanges. Of course this does not mean that the journal will be only devoted to practical aspects.
期刊最新文献
A semi-implicit finite volume scheme for dissipative measure-valued solutions to the barotropic Euler system Error analysis of Fourier-Legendre and Fourier-Hermite spectral-Galerkin methods for the Vlasov-Poisson system Two approaches to compute unsteady compressible two-phase flow models with stiff relaxation terms Self-interacting diffusions: long-time behaviour and exit-problem in the uniformly convex case On the numerical approximation of Blaschke-Santalo diagrams using Centroidal Voronoi Tessellations
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1