Zongbo Shi, Sonja Endres, Anna Rutgersson, Shams Al-Hajjaji, Selma Brynolf, Dennis Booge, Ida-Maja Hassellöv, Christos Kontovas, Rohan Kumar, Huan Liu, Christa Marandino, Volker Matthias, Jana Moldanová, Kent Salo, Maxim Sebe, Wen Yi, Mingxi Yang, Chao Zhang
{"title":"Perspectives on shipping emissions and their impacts on the surface ocean and lower atmosphere: An environmental-social-economic dimension","authors":"Zongbo Shi, Sonja Endres, Anna Rutgersson, Shams Al-Hajjaji, Selma Brynolf, Dennis Booge, Ida-Maja Hassellöv, Christos Kontovas, Rohan Kumar, Huan Liu, Christa Marandino, Volker Matthias, Jana Moldanová, Kent Salo, Maxim Sebe, Wen Yi, Mingxi Yang, Chao Zhang","doi":"10.1525/elementa.2023.00052","DOIUrl":null,"url":null,"abstract":"Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts.","PeriodicalId":54279,"journal":{"name":"Elementa-Science of the Anthropocene","volume":"133 1","pages":"0"},"PeriodicalIF":4.7000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Elementa-Science of the Anthropocene","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1525/elementa.2023.00052","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 1
Abstract
Shipping is the cornerstone of international trade and thus a critical economic sector. However, ships predominantly use fossil fuels for propulsion and electricity generation, which emit greenhouse gases such as carbon dioxide and methane, and air pollutants such as particulate matter, sulfur oxides, nitrogen oxides, and volatile organic compounds. The availability of Automatic Information System (AIS) data has helped to improve the emission inventories of air pollutants from ship stacks. Recent laboratory, shipborne, satellite and modeling studies provided convincing evidence that ship-emitted air pollutants have significant impacts on atmospheric chemistry, clouds, and ocean biogeochemistry. The need to improve air quality to protect human health and to mitigate climate change has driven a series of regulations at international, national, and local levels, leading to rapid energy and technology transitions. This resulted in major changes in air emissions from shipping with implications on their environmental impacts, but observational studies remain limited. Growth in shipping in polar areas is expected to have distinct impacts on these pristine and sensitive environments. The transition to more sustainable shipping is also expected to cause further changes in fuels and technologies, and thus in air emissions. However, major uncertainties remain on how future shipping emissions may affect atmospheric composition, clouds, climate, and ocean biogeochemistry, under the rapidly changing policy (e.g., targeting decarbonization), socioeconomic, and climate contexts.
期刊介绍:
A new open-access scientific journal, Elementa: Science of the Anthropocene publishes original research reporting on new knowledge of the Earth’s physical, chemical, and biological systems; interactions between human and natural systems; and steps that can be taken to mitigate and adapt to global change. Elementa reports on fundamental advancements in research organized initially into six knowledge domains, embracing the concept that basic knowledge can foster sustainable solutions for society. Elementa is published on an open-access, public-good basis—available freely and immediately to the world.