{"title":"Simple Estimation of Creep Properties of Negative Electrode for Lithium-Ion Battery","authors":"Shota Ono, Kairi Shiraishi, Yoshinao Kishimoto, Yukiyoshi Kobayashi, Hiroshi Yamazaki, Takahiro Nomoto","doi":"10.2320/matertrans.mt-z2023003","DOIUrl":null,"url":null,"abstract":"The macroscopic creep properties of negative electrodes in lithium-ion batteries and their estimation methods have been investigated based on the microscopic structure of the electrode. Tensile and creep tests were conducted on a negative electrode consisting of carbon powder and polyvinylidene fluoride (PVDF) binder. The stress-strain curve, the time history of the tensile strain, and the creep rupture time were measured in these tests and estimated using the simple model proposed in this study. The proposed model approximates the alignment of carbon particles as body-centered cubic (bcc) or face-centered cubic (fcc). The external load on the model was supported by a PVDF binder located between carbon particles. The test results showed that PVDF binder mechanical properties affect the macroscopic mechanical properties of the negative electrode, including the creep properties. The stress-strain curve and time history of the tensile strain were located between the upper and lower limits of the proposed model. The tensile strength and creep rupture time agree with the lower limit of the proposed model.","PeriodicalId":18402,"journal":{"name":"Materials Transactions","volume":"27 1","pages":"0"},"PeriodicalIF":1.2000,"publicationDate":"2023-07-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Transactions","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2320/matertrans.mt-z2023003","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
The macroscopic creep properties of negative electrodes in lithium-ion batteries and their estimation methods have been investigated based on the microscopic structure of the electrode. Tensile and creep tests were conducted on a negative electrode consisting of carbon powder and polyvinylidene fluoride (PVDF) binder. The stress-strain curve, the time history of the tensile strain, and the creep rupture time were measured in these tests and estimated using the simple model proposed in this study. The proposed model approximates the alignment of carbon particles as body-centered cubic (bcc) or face-centered cubic (fcc). The external load on the model was supported by a PVDF binder located between carbon particles. The test results showed that PVDF binder mechanical properties affect the macroscopic mechanical properties of the negative electrode, including the creep properties. The stress-strain curve and time history of the tensile strain were located between the upper and lower limits of the proposed model. The tensile strength and creep rupture time agree with the lower limit of the proposed model.