Utilizing Pyrolysis of Plastic Debris for Refuse-Derived Fuel Production and Viable Substitute to Wood Debris

Q4 Environmental Science Ecological Engineering Environmental Technology Pub Date : 2023-11-01 DOI:10.12912/27197050/171443
Mega Mutiara Sari, Takanobu Inoue, Regil Kentaurus Harryes, Iva Yenis Septiariva, Kuriko Yokota, Suprihanto Notodarmodjo, Shigeru Kato, Rizal Muhammad Al Ghifari, Sapta Suhardono, I Wayan Koko Suryawan, Wisnu Prayogo, Nur Novilina Arifianingsih
{"title":"Utilizing Pyrolysis of Plastic Debris for Refuse-Derived Fuel Production and Viable Substitute to Wood Debris","authors":"Mega Mutiara Sari, Takanobu Inoue, Regil Kentaurus Harryes, Iva Yenis Septiariva, Kuriko Yokota, Suprihanto Notodarmodjo, Shigeru Kato, Rizal Muhammad Al Ghifari, Sapta Suhardono, I Wayan Koko Suryawan, Wisnu Prayogo, Nur Novilina Arifianingsih","doi":"10.12912/27197050/171443","DOIUrl":null,"url":null,"abstract":"This research explores the viability of converting discarded Polyethylene Terephthalate (PET) plastic waste into a valuable resource through the implementation of pyrolysis and refuse-derived fuel (RDF) technologies. The objec-tive is to assess the potential of PET charcoal waste as an efficient source for RDF generation, surpassing the en - ergy recovery and recycling potential of PET waste. The study introduces three RDF variants: RDF PET100, RDF PET50, and RDF PET0. RDF PET100 is comprised entirely of PET charcoal, RDF PET50 combines 50% PET charcoal with 50% wood debris, and RDF PET0 consists entirely of wood debris. Comprehensive assessments of water content, ash content, and calorific value were conducted to evaluate the quality of these RDF formulations. Results indicate that RDF PET100 exhibits a water content of 2.63%, ash content of 0.73%, and calorific value of 5,976 MJ/kg. Similarly, RDF PET50 showcases a water content of 3.6%, ash content of 1.05%, and calorific value of 5,587 MJ/kg. RDF PET0 presents a water content of 7.51%, ash content of 1.36%, and calorific value of 4,198 MJ/kg. The outcomes underline the potential of PET plastic waste repurposing through RDF and pyrolysis techniques. Particularly, RDF PET100 emerges as a high-caliber fuel option characterized by its minimal water and ash content, coupled with a substantial calorific value. This innovation holds promise in mitigating plastic waste challenges, particularly pertinent in the context of Indonesia.","PeriodicalId":52648,"journal":{"name":"Ecological Engineering Environmental Technology","volume":"197 ","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ecological Engineering Environmental Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12912/27197050/171443","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"Environmental Science","Score":null,"Total":0}
引用次数: 0

Abstract

This research explores the viability of converting discarded Polyethylene Terephthalate (PET) plastic waste into a valuable resource through the implementation of pyrolysis and refuse-derived fuel (RDF) technologies. The objec-tive is to assess the potential of PET charcoal waste as an efficient source for RDF generation, surpassing the en - ergy recovery and recycling potential of PET waste. The study introduces three RDF variants: RDF PET100, RDF PET50, and RDF PET0. RDF PET100 is comprised entirely of PET charcoal, RDF PET50 combines 50% PET charcoal with 50% wood debris, and RDF PET0 consists entirely of wood debris. Comprehensive assessments of water content, ash content, and calorific value were conducted to evaluate the quality of these RDF formulations. Results indicate that RDF PET100 exhibits a water content of 2.63%, ash content of 0.73%, and calorific value of 5,976 MJ/kg. Similarly, RDF PET50 showcases a water content of 3.6%, ash content of 1.05%, and calorific value of 5,587 MJ/kg. RDF PET0 presents a water content of 7.51%, ash content of 1.36%, and calorific value of 4,198 MJ/kg. The outcomes underline the potential of PET plastic waste repurposing through RDF and pyrolysis techniques. Particularly, RDF PET100 emerges as a high-caliber fuel option characterized by its minimal water and ash content, coupled with a substantial calorific value. This innovation holds promise in mitigating plastic waste challenges, particularly pertinent in the context of Indonesia.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
利用塑料碎片热解生产垃圾燃料和可行的木材碎片替代品
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Ecological Engineering  Environmental Technology
Ecological Engineering Environmental Technology Environmental Science-Environmental Science (miscellaneous)
CiteScore
1.30
自引率
0.00%
发文量
159
审稿时长
8 weeks
期刊最新文献
Synthesis of Mn-Co-Ni Composite Electrode by Anodic and Cathodic Electrodeposition for Indirect Electro-oxidation of Phenol – Optimization of the Removal by Response Surface Methodology Protection Coordination for Wind Farm Integration in the Kosovo Transmission System Towards a Sustainable Energy Future – The Case for Smart Grids in Jordan GIS and Index-Based Methods for Assessing the Human Health Risk and Characterizing the Groundwater Quality of a Coastal Aquifer Impact of Water Stress on the Planktonic Biodiversity of the Youssef Ben Tachafine Dam (Souss Massa, Morocco)
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1