Ruth Cristini Torres, Marco Antônio Prado Nunes, Marcelo Mendonça Mota, Tharciano Luiz Teixeira Braga Da Silva, Cristiane Costa da Cunha Oliveira, Cláudia Moura De Melo
{"title":"Modelo matemático para prever probabilidade de quilombolas desenvolverem síndrome metabólica com fluxograma de atendimento de saúde","authors":"Ruth Cristini Torres, Marco Antônio Prado Nunes, Marcelo Mendonça Mota, Tharciano Luiz Teixeira Braga Da Silva, Cristiane Costa da Cunha Oliveira, Cláudia Moura De Melo","doi":"10.14808/sci.plena.2023.087501","DOIUrl":null,"url":null,"abstract":"Desenvolveu-se um modelo matemático utilizando algoritmos de Machine learning para prever probabilidade de quilombolas desenvolverem síndrome metabólica, bem como propor um fluxograma de atendimento de saúde. Este foi um estudo transversal com uso de inteligência artificial. Adotou-se como variável dependente ter ou não síndrome metabólica. Foi realizada a análise bivariada comparando-se as variáveis independentes, os indicadores antropométricos e bioquímicos em relação a presença de síndrome metabólica e as variáveis categóricas que foram avaliadas pelo teste do Qui-quadrado (p <0,05). Utilizou-se o teste de Análise de Variância ou Kruskal-Wallis conforme a tendência de normalidade avaliada pelo teste de Shapiro-Wilk e a ferramenta de análise de dados machine learning, por meio do método de Árvore de Decisão. A árvore de decisão para predição de síndrome metabólica em quilombolas apresentou acurácia de 75%, gerando um gráfico em relação ao processo, ilustrado por meio de fluxograma para orientar a tomada de decisão em relação à saúde e prevenção de síndrome metabólica. O modelo preditivo permitiu identificar os pontos de corte específicos dos indicadores antropométricos mais importantes a serem mensurados no primeiro atendimento de saúde dos quilombolas. A acurácia do modelo preditivo permite a aplicação do fluxograma em outras comunidades quilombolas, apresentando-se como uma ferramenta tecnológica facilitadora para tomada de decisão em saúde.","PeriodicalId":22090,"journal":{"name":"Scientia Plena","volume":"8 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-09-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Scientia Plena","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14808/sci.plena.2023.087501","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Desenvolveu-se um modelo matemático utilizando algoritmos de Machine learning para prever probabilidade de quilombolas desenvolverem síndrome metabólica, bem como propor um fluxograma de atendimento de saúde. Este foi um estudo transversal com uso de inteligência artificial. Adotou-se como variável dependente ter ou não síndrome metabólica. Foi realizada a análise bivariada comparando-se as variáveis independentes, os indicadores antropométricos e bioquímicos em relação a presença de síndrome metabólica e as variáveis categóricas que foram avaliadas pelo teste do Qui-quadrado (p <0,05). Utilizou-se o teste de Análise de Variância ou Kruskal-Wallis conforme a tendência de normalidade avaliada pelo teste de Shapiro-Wilk e a ferramenta de análise de dados machine learning, por meio do método de Árvore de Decisão. A árvore de decisão para predição de síndrome metabólica em quilombolas apresentou acurácia de 75%, gerando um gráfico em relação ao processo, ilustrado por meio de fluxograma para orientar a tomada de decisão em relação à saúde e prevenção de síndrome metabólica. O modelo preditivo permitiu identificar os pontos de corte específicos dos indicadores antropométricos mais importantes a serem mensurados no primeiro atendimento de saúde dos quilombolas. A acurácia do modelo preditivo permite a aplicação do fluxograma em outras comunidades quilombolas, apresentando-se como uma ferramenta tecnológica facilitadora para tomada de decisão em saúde.