Unsteady Cavitation Analysis of the Centrifugal Pump Based on Entropy Production and Pressure Fluctuation

IF 1.3 Q2 ENGINEERING, AEROSPACE International Journal of Turbomachinery, Propulsion and Power Pub Date : 2023-11-11 DOI:10.3390/ijtpp8040046
Qiaorui Si, Fanjie Deng, Yu Lu, Minquan Liao, Shouqi Yuan
{"title":"Unsteady Cavitation Analysis of the Centrifugal Pump Based on Entropy Production and Pressure Fluctuation","authors":"Qiaorui Si, Fanjie Deng, Yu Lu, Minquan Liao, Shouqi Yuan","doi":"10.3390/ijtpp8040046","DOIUrl":null,"url":null,"abstract":"A numerical method using combined detached-eddy simulation (DES) and a cavitation model considering the rotation effect is used for unsteady cavitation flow field of the centrifugal pump. A closed-type pump test system was established to obtain the pump performance and pressure pulsation characteristics under different flow rates and cavitation condition, which provide boundary conditions and verification of calculations. Based on the calculation results of the unsteady flow field of the centrifugal pump cavitation, the entropy generation analysis of the flow field and an analysis of the pressure fluctuation characteristics were carried out. Then, we tried to reveal the relationship between cavitation and the deterioration of the centrifugal pump performance and the generation of the unstable operation excitation force. The internal energy loss is mainly concentrated in the impeller, volute, and pump cavity area, which accounts for more than 85% of the total entropy generation. The characteristic frequency of a Strouhal number of about 0.333 appears at the volute tongue due to the cavitation flow spread downstream.","PeriodicalId":36626,"journal":{"name":"International Journal of Turbomachinery, Propulsion and Power","volume":null,"pages":null},"PeriodicalIF":1.3000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Turbomachinery, Propulsion and Power","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/ijtpp8040046","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, AEROSPACE","Score":null,"Total":0}
引用次数: 0

Abstract

A numerical method using combined detached-eddy simulation (DES) and a cavitation model considering the rotation effect is used for unsteady cavitation flow field of the centrifugal pump. A closed-type pump test system was established to obtain the pump performance and pressure pulsation characteristics under different flow rates and cavitation condition, which provide boundary conditions and verification of calculations. Based on the calculation results of the unsteady flow field of the centrifugal pump cavitation, the entropy generation analysis of the flow field and an analysis of the pressure fluctuation characteristics were carried out. Then, we tried to reveal the relationship between cavitation and the deterioration of the centrifugal pump performance and the generation of the unstable operation excitation force. The internal energy loss is mainly concentrated in the impeller, volute, and pump cavity area, which accounts for more than 85% of the total entropy generation. The characteristic frequency of a Strouhal number of about 0.333 appears at the volute tongue due to the cavitation flow spread downstream.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于熵产和压力波动的离心泵非定常空化分析
采用结合分离涡模拟(DES)和考虑旋转效应的空化模型对离心泵非定常空化流场进行了数值模拟。建立了闭式泵试验系统,获得了不同流量和空化条件下泵的性能和压力脉动特性,为计算提供了边界条件和验证。在离心泵空化非定常流场计算结果的基础上,进行了流场熵产分析和压力脉动特性分析。然后,我们试图揭示空化与离心泵性能恶化和不稳定运行激励力的产生之间的关系。内部能量损失主要集中在叶轮、蜗壳和泵腔区域,占总熵产的85%以上。由于空化流向下游扩散,在蜗壳舌处出现了斯特劳哈尔数约0.333的特征频率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
2.30
自引率
21.40%
发文量
29
审稿时长
11 weeks
期刊最新文献
Turbofan Performance Estimation Using Neural Network Component Maps and Genetic Algorithm-Least Squares Solvers Experimental Investigation of an Efficient and Lightweight Designed Counter-Rotating Shrouded Fan Stage Experimental Investigation of the Sensitivity of Forced Response to Cold Streaks in an Axial Turbine Heat Load Development and Heat Map Sensitivity Analysis for Civil Aero-Engines Numerical Investigation of Forced Response in a Transonic Compressor Stage—Highlighting Challenges Using Experimental Validation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1