{"title":"The Detection of 27 Fentanyl Compounds in Solid and Liquid Drugs Based on Differential Raman Spectroscopy","authors":"Yufeng Wang, Wanli Sheng, Xiang Liu, Jiajuan Guo, Xun Zhang, Xiaohua Qi, Mingqiang Zou, Cong Wang","doi":"10.3390/chemosensors11110561","DOIUrl":null,"url":null,"abstract":"Fentanyl and its derivatives have been mainstays for the treatment of pain for many years. To accurately detect them in medical applications and customs, a rapid, sensitive, and selective method is urgently needed. In this study, we established a point-of-care-testing (POCT) differential Raman approach for the detection of fentanyl substances in liquid and solid conditions. The silver nanoparticle was prepared and characterized as SERS substrate, which can adsorb fentanyl-related molecules on the rough surface to enhance the Raman signal. Subsequently, 27 kinds of fentanyl-related substances were detected to determine that the POCT spectral resolution is better than 6 cm−1, Raman detection range is 100–3200 cm−1, and the detection limit of the fentanyl-related substances at 1002 cm−1 is 0.1–25 ppb. Furthermore, the Raman characteristic peaks of fentanyl were checked through comparison between theoretical calculations and experiments to obtain a database for rapid on-site inspection. Thus, the fast, accurate, stable POCT approach can be widely applied to monitor drugs and toxins due to its sensitivity, specificity, and abundance database.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":"22 26","pages":"0"},"PeriodicalIF":3.7000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11110561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0
Abstract
Fentanyl and its derivatives have been mainstays for the treatment of pain for many years. To accurately detect them in medical applications and customs, a rapid, sensitive, and selective method is urgently needed. In this study, we established a point-of-care-testing (POCT) differential Raman approach for the detection of fentanyl substances in liquid and solid conditions. The silver nanoparticle was prepared and characterized as SERS substrate, which can adsorb fentanyl-related molecules on the rough surface to enhance the Raman signal. Subsequently, 27 kinds of fentanyl-related substances were detected to determine that the POCT spectral resolution is better than 6 cm−1, Raman detection range is 100–3200 cm−1, and the detection limit of the fentanyl-related substances at 1002 cm−1 is 0.1–25 ppb. Furthermore, the Raman characteristic peaks of fentanyl were checked through comparison between theoretical calculations and experiments to obtain a database for rapid on-site inspection. Thus, the fast, accurate, stable POCT approach can be widely applied to monitor drugs and toxins due to its sensitivity, specificity, and abundance database.
期刊介绍:
Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.The journal is indexed in Scopus, SCIE (Web of Science), CAPlus / SciFinder, Inspec, Engineering Village and other databases.