The Detection of 27 Fentanyl Compounds in Solid and Liquid Drugs Based on Differential Raman Spectroscopy

IF 3.7 3区 工程技术 Q2 CHEMISTRY, ANALYTICAL Chemosensors Pub Date : 2023-11-11 DOI:10.3390/chemosensors11110561
Yufeng Wang, Wanli Sheng, Xiang Liu, Jiajuan Guo, Xun Zhang, Xiaohua Qi, Mingqiang Zou, Cong Wang
{"title":"The Detection of 27 Fentanyl Compounds in Solid and Liquid Drugs Based on Differential Raman Spectroscopy","authors":"Yufeng Wang, Wanli Sheng, Xiang Liu, Jiajuan Guo, Xun Zhang, Xiaohua Qi, Mingqiang Zou, Cong Wang","doi":"10.3390/chemosensors11110561","DOIUrl":null,"url":null,"abstract":"Fentanyl and its derivatives have been mainstays for the treatment of pain for many years. To accurately detect them in medical applications and customs, a rapid, sensitive, and selective method is urgently needed. In this study, we established a point-of-care-testing (POCT) differential Raman approach for the detection of fentanyl substances in liquid and solid conditions. The silver nanoparticle was prepared and characterized as SERS substrate, which can adsorb fentanyl-related molecules on the rough surface to enhance the Raman signal. Subsequently, 27 kinds of fentanyl-related substances were detected to determine that the POCT spectral resolution is better than 6 cm−1, Raman detection range is 100–3200 cm−1, and the detection limit of the fentanyl-related substances at 1002 cm−1 is 0.1–25 ppb. Furthermore, the Raman characteristic peaks of fentanyl were checked through comparison between theoretical calculations and experiments to obtain a database for rapid on-site inspection. Thus, the fast, accurate, stable POCT approach can be widely applied to monitor drugs and toxins due to its sensitivity, specificity, and abundance database.","PeriodicalId":10057,"journal":{"name":"Chemosensors","volume":null,"pages":null},"PeriodicalIF":3.7000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Chemosensors","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/chemosensors11110561","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"CHEMISTRY, ANALYTICAL","Score":null,"Total":0}
引用次数: 0

Abstract

Fentanyl and its derivatives have been mainstays for the treatment of pain for many years. To accurately detect them in medical applications and customs, a rapid, sensitive, and selective method is urgently needed. In this study, we established a point-of-care-testing (POCT) differential Raman approach for the detection of fentanyl substances in liquid and solid conditions. The silver nanoparticle was prepared and characterized as SERS substrate, which can adsorb fentanyl-related molecules on the rough surface to enhance the Raman signal. Subsequently, 27 kinds of fentanyl-related substances were detected to determine that the POCT spectral resolution is better than 6 cm−1, Raman detection range is 100–3200 cm−1, and the detection limit of the fentanyl-related substances at 1002 cm−1 is 0.1–25 ppb. Furthermore, the Raman characteristic peaks of fentanyl were checked through comparison between theoretical calculations and experiments to obtain a database for rapid on-site inspection. Thus, the fast, accurate, stable POCT approach can be widely applied to monitor drugs and toxins due to its sensitivity, specificity, and abundance database.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于差分拉曼光谱的固体和液体药物中27种芬太尼类化合物的检测
芬太尼及其衍生物多年来一直是治疗疼痛的主要药物。为了在医学应用和海关中准确地检测到它们,迫切需要一种快速、灵敏、有选择性的方法。在这项研究中,我们建立了一种点护理测试(POCT)差分拉曼方法来检测液体和固体条件下的芬太尼物质。制备了纳米银颗粒,表征为SERS底物,可以在粗糙表面吸附芬太尼相关分子,增强拉曼信号。随后对27种芬太尼相关物质进行检测,确定POCT光谱分辨率优于6 cm−1,拉曼检测范围为100-3200 cm−1,在1002 cm−1处芬太尼相关物质的检出限为0.1-25 ppb。通过理论计算与实验对比,对芬太尼的拉曼特征峰进行校核,获得快速现场检测的数据库。因此,快速、准确、稳定的POCT方法因其敏感性、特异性和丰度数据库而广泛应用于药物和毒素的监测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Chemosensors
Chemosensors Chemistry-Analytical Chemistry
CiteScore
5.00
自引率
9.50%
发文量
450
审稿时长
11 weeks
期刊介绍: Chemosensors (ISSN 2227-9040; CODEN: CHEMO9) is an international, scientific, open access journal on the science and technology of chemical sensors published quarterly online by MDPI.
期刊最新文献
Controlled Insertion of Silver Nanoparticles in LbL Nanostructures: Fine-Tuning the Sensing Units of an Impedimetric E-Tongue The Developments on Lateral Flow Immunochromatographic Assay for Food Safety in Recent 10 Years: A Review All-Solid-State Potentiometric Sensor Based on Graphene Oxide as Ion-to-Electron Transducer for Nitrate Detection in Water Samples Defect Engineering in Transition Metal Dichalcogenide-Based Gas Sensors Hydrothermally Synthesized Cerium Phosphate with Functionalized Carbon Nanofiber Nanocomposite for Enhanced Electrochemical Detection of Hypoxanthine
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1