Testing Serial Independence of Object-Valued Time Series

IF 2.4 2区 数学 Q2 BIOLOGY Biometrika Pub Date : 2023-11-11 DOI:10.1093/biomet/asad069
Feiyu Jiang, Hanjia Gao, Xiaofeng Shao
{"title":"Testing Serial Independence of Object-Valued Time Series","authors":"Feiyu Jiang, Hanjia Gao, Xiaofeng Shao","doi":"10.1093/biomet/asad069","DOIUrl":null,"url":null,"abstract":"Summary We propose a novel method for testing serial independence of object-valued time series in metric spaces, which is more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to auto-distance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cramér von-Mises type test statistic. New theoretical arguments are developed to establish the asymptotic behaviour of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the nonpivotal limiting null distribution. Extensive numerical simulations and two real data applications on cumulative intraday returns and human mortality data are conducted to illustrate the effectiveness and versatility of our proposed test.","PeriodicalId":9001,"journal":{"name":"Biometrika","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2023-11-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biometrika","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1093/biomet/asad069","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOLOGY","Score":null,"Total":0}
引用次数: 0

Abstract

Summary We propose a novel method for testing serial independence of object-valued time series in metric spaces, which is more general than Euclidean or Hilbert spaces. The proposed method is fully nonparametric, free of tuning parameters and can capture all nonlinear pairwise dependence. The key concept used in this paper is the distance covariance in metric spaces, which is extended to auto-distance covariance for object-valued time series. Furthermore, we propose a generalized spectral density function to account for pairwise dependence at all lags and construct a Cramér von-Mises type test statistic. New theoretical arguments are developed to establish the asymptotic behaviour of the test statistic. A wild bootstrap is also introduced to obtain the critical values of the nonpivotal limiting null distribution. Extensive numerical simulations and two real data applications on cumulative intraday returns and human mortality data are conducted to illustrate the effectiveness and versatility of our proposed test.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
对象值时间序列序列独立性的检验
摘要本文提出了一种在度量空间中检验对象值时间序列序列独立性的新方法,该方法比欧几里得空间和希尔伯特空间更为普遍。该方法是完全非参数的,不需要调整参数,可以捕获所有的非线性两两依赖关系。本文使用的关键概念是度量空间中的距离协方差,并将其推广到对象值时间序列的自距离协方差。此外,我们提出了一个广义谱密度函数来解释所有滞后的两两依赖,并构造了一个cram - mises型检验统计量。提出了新的理论论据来建立检验统计量的渐近行为。为了得到非枢纽极限零分布的临界值,还引入了野自举法。广泛的数值模拟和两个实际数据应用累积日内收益和人类死亡率数据,以说明我们提出的测试的有效性和多功能性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Biometrika
Biometrika 生物-生物学
CiteScore
5.50
自引率
3.70%
发文量
56
审稿时长
6-12 weeks
期刊介绍: Biometrika is primarily a journal of statistics in which emphasis is placed on papers containing original theoretical contributions of direct or potential value in applications. From time to time, papers in bordering fields are also published.
期刊最新文献
Local Bootstrap for Network Data A Simple Bootstrap for Chatterjee's Rank Correlation Sensitivity models and bounds under sequential unmeasured confounding in longitudinal studies Studies in the history of probability and statistics, LI: the first conditional logistic regression Skip-sampling: subsampling in the frequency domain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1