{"title":"Steady-state coherence of spin-boson model in a general non-Markovian environment","authors":"Fangqin Jin, Wen-Long You, Yue Dai, Tian-Cheng Yi, Yuli Dong, Chengjie Zhang","doi":"10.1142/s0129183124500542","DOIUrl":null,"url":null,"abstract":"Based on the quantum coherence theory, we employ the [Formula: see text]-norm measure to explore the steady-state coherence (SSC) in the spin-boson model. In this model, the environment is a non-Markovian bosonic bath with Ohmic-like spectral density. More generally, the interaction coupling between the qubit and the environment is a linear superposition of pure dephasing and pure damping coupling. Governed by the non-Markovian dynamics, some compact expressions of the SSC have been obtained at both zero temperature and high temperature. It shows that the hybrid coupling significantly affects the SSC. Moreover, a comprehensive analysis has been conducted to investigate the effects of various crucial factors, including the temperature of the bosonic bath, the qubit’s tunneling and the Ohmicity parameter. This analysis provides an effective approach for maintaining a relatively high SSC by manipulating system parameters.","PeriodicalId":50308,"journal":{"name":"International Journal of Modern Physics C","volume":"76 18","pages":"0"},"PeriodicalIF":1.5000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Modern Physics C","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0129183124500542","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0
Abstract
Based on the quantum coherence theory, we employ the [Formula: see text]-norm measure to explore the steady-state coherence (SSC) in the spin-boson model. In this model, the environment is a non-Markovian bosonic bath with Ohmic-like spectral density. More generally, the interaction coupling between the qubit and the environment is a linear superposition of pure dephasing and pure damping coupling. Governed by the non-Markovian dynamics, some compact expressions of the SSC have been obtained at both zero temperature and high temperature. It shows that the hybrid coupling significantly affects the SSC. Moreover, a comprehensive analysis has been conducted to investigate the effects of various crucial factors, including the temperature of the bosonic bath, the qubit’s tunneling and the Ohmicity parameter. This analysis provides an effective approach for maintaining a relatively high SSC by manipulating system parameters.
期刊介绍:
International Journal of Modern Physics C (IJMPC) is a journal dedicated to Computational Physics and aims at publishing both review and research articles on the use of computers to advance knowledge in physical sciences and the use of physical analogies in computation. Topics covered include: algorithms; computational biophysics; computational fluid dynamics; statistical physics; complex systems; computer and information science; condensed matter physics, materials science; socio- and econophysics; data analysis and computation in experimental physics; environmental physics; traffic modelling; physical computation including neural nets, cellular automata and genetic algorithms.