Ryan H. DeBlock, Hunter O. Ford, Christopher N. Chervin, Debra R. Rolison, Michelle D. Johannes, Jeffrey W. Long
{"title":"Uncovering Electrochemical Cation-Storage Mechanisms in Defective Vanadium Ferrites Using Synchrotron-Quality, in-Lab X-Ray Absorption Spectroscopy","authors":"Ryan H. DeBlock, Hunter O. Ford, Christopher N. Chervin, Debra R. Rolison, Michelle D. Johannes, Jeffrey W. Long","doi":"10.1149/ma2023-01472520mtgabs","DOIUrl":null,"url":null,"abstract":"X-ray absorption spectroscopy (XAS) is a critical tool for investigating new materials for electrochemical energy storage, providing important information on metal oxidation state and element-specific coordination. Historically, XAS measurements had required the energy specificity and brilliance of a synchrotron facility, but recent advances in detectors and optics are bringing XAS capabilities to the laboratory setting with multiple commercial instruments available. At the Naval Research Laboratory, we use laboratory-based XAS to study a class of disordered vanadium ferrite (VFe 2 O x ) aerogels that exhibit promising performance for electrochemical energy-storage applications such as rechargeable lithium-ion batteries. 1,2 The structure and composition of these materials are readily varied via modifications to the epoxide-promoted sol–gel reaction of iron chloride and vanadium isopropoxide (e.g., substitution with other cations such as Al 3+ ), 2 as well as post-synthesis thermal treatments that render disordered, defective, or nanocrystalline forms of a given composition. The resulting series of VFe 2 O x materials are evaluated by XAS in both ex situ and in situ configurations, including as powder-composite cathodes versus lithium metal in pouch cells with conventional nonaqueous lithium-ion electrolyte. X-ray Absorption Near-edge Spectroscopy (XANES) at the V K-edge and Fe K-edge is used to track V and Fe oxidation state, respectively, permitting the assignment of metal-centered redox across the broad potential range over which these materials are electrochemically active (2–3.4 V vs Li/Li + ). Extended X-ray Absorption Fine Structure (EXAFS) analysis provides information on V- or Fe-specific coordination as a function of composition, structure, and state-of-charge. Parallel computation efforts using Density-Functional Theory offer a complementary feedback loop with experimental XANES and EXAFS to achieve a sophisticated description of these complex battery materials. 1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, and J. W. Long, J. Mater. Chem. A 3 , 12059 (2015). 2. C. N. Chervin, R. H. DeBlock, J. F. Parker, B. M. Hudak, N. L. Skeele, J. S. Ko, D. R. Rolison, and J. W. Long, RSC Adv. 11 , 14495 (2021).","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"68 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01472520mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
X-ray absorption spectroscopy (XAS) is a critical tool for investigating new materials for electrochemical energy storage, providing important information on metal oxidation state and element-specific coordination. Historically, XAS measurements had required the energy specificity and brilliance of a synchrotron facility, but recent advances in detectors and optics are bringing XAS capabilities to the laboratory setting with multiple commercial instruments available. At the Naval Research Laboratory, we use laboratory-based XAS to study a class of disordered vanadium ferrite (VFe 2 O x ) aerogels that exhibit promising performance for electrochemical energy-storage applications such as rechargeable lithium-ion batteries. 1,2 The structure and composition of these materials are readily varied via modifications to the epoxide-promoted sol–gel reaction of iron chloride and vanadium isopropoxide (e.g., substitution with other cations such as Al 3+ ), 2 as well as post-synthesis thermal treatments that render disordered, defective, or nanocrystalline forms of a given composition. The resulting series of VFe 2 O x materials are evaluated by XAS in both ex situ and in situ configurations, including as powder-composite cathodes versus lithium metal in pouch cells with conventional nonaqueous lithium-ion electrolyte. X-ray Absorption Near-edge Spectroscopy (XANES) at the V K-edge and Fe K-edge is used to track V and Fe oxidation state, respectively, permitting the assignment of metal-centered redox across the broad potential range over which these materials are electrochemically active (2–3.4 V vs Li/Li + ). Extended X-ray Absorption Fine Structure (EXAFS) analysis provides information on V- or Fe-specific coordination as a function of composition, structure, and state-of-charge. Parallel computation efforts using Density-Functional Theory offer a complementary feedback loop with experimental XANES and EXAFS to achieve a sophisticated description of these complex battery materials. 1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, and J. W. Long, J. Mater. Chem. A 3 , 12059 (2015). 2. C. N. Chervin, R. H. DeBlock, J. F. Parker, B. M. Hudak, N. L. Skeele, J. S. Ko, D. R. Rolison, and J. W. Long, RSC Adv. 11 , 14495 (2021).
x射线吸收光谱(XAS)是研究电化学储能新材料的重要工具,提供了金属氧化态和元素特定配位的重要信息。从历史上看,XAS测量需要同步加速器设备的能量专一性和亮度,但最近探测器和光学的进步将XAS功能带到了实验室环境中,有多种商用仪器可用。在海军研究实验室,我们使用基于实验室的XAS来研究一类无序钒铁氧体(VFe 2o x)气凝胶,这种气凝胶在电化学储能应用(如可充电锂离子电池)中表现出很好的性能。1,2这些材料的结构和组成很容易通过对环氧化物促进的氯化铁和异丙醇钒的溶胶-凝胶反应的修饰(例如,用其他阳离子如Al 3+取代),2以及合成后的热处理来改变给定组合物的无序、缺陷或纳米晶形式。所得的vfe2ox材料系列在非原位和原位配置下都通过XAS进行了评估,包括作为粉末复合阴极与使用传统非水锂离子电解质的袋状电池中的锂金属。x射线吸收近边光谱(XANES)在V - k边缘和Fe - k边缘分别用于跟踪V和Fe的氧化状态,允许在这些材料具有电化学活性的广泛电位范围内(2-3.4 V vs Li/Li +)分配金属中心氧化还原。扩展x射线吸收精细结构(EXAFS)分析提供了V或fe特异性配位的信息,作为组成,结构和电荷状态的函数。使用密度泛函理论的并行计算工作与实验XANES和EXAFS提供了互补的反馈回路,以实现对这些复杂电池材料的复杂描述。1. C. N. Chervin, J. S. Ko, B. W. Miller, L. Dudek, A. N. Mansour, M. D. Donakowski, T. Brintlinger, P. Gogotsi, S. Chattopadhyay, T. Shibata, J. F. Parker, B. P. Hahn, D. R. Rolison, J. W. Long, J. Mater。化学。农业工程学报,2015,39(5)。2. 陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,陈志强,2014(4)。