High C-Rate Dynamic Lithium (de)Insertion Pathway Investigated via Synchrotron-Based Operando XRD and Operando Scanning x-Ray Microscopy

Bonho Koo, Jinkyu Chung, Juwon Kim, Hyejeong Hyun, Dimitrios Fraggedakis, Jian Wang, Namdong Kim, Markus Weigand, Tae Joo Shin, Daan Hein Alsem, Norman Salmon, Martin Z. Bazant, Jongwoo Lim
{"title":"High C-Rate Dynamic Lithium (de)Insertion Pathway Investigated via Synchrotron-Based Operando XRD and Operando Scanning x-Ray Microscopy","authors":"Bonho Koo, Jinkyu Chung, Juwon Kim, Hyejeong Hyun, Dimitrios Fraggedakis, Jian Wang, Namdong Kim, Markus Weigand, Tae Joo Shin, Daan Hein Alsem, Norman Salmon, Martin Z. Bazant, Jongwoo Lim","doi":"10.1149/ma2023-01472522mtgabs","DOIUrl":null,"url":null,"abstract":"Lithium-ion insertion kinetics fundamentally hinges upon phase transformation behavior during (dis)charging and understanding the rate-dependent kinetics is crucial for the development of high-power batteries. At high c-rates, kinetic hysteresis is amplified and phase evolution becomes heterogeneous and unpredictable. Specifically, discharge becomes more sluggish than charging of most battery electrodes including LiNi x Mn y Co z O 2 (NMC) and LiFePO 4 (LFP). Here, we developed an operando soft x-ray microscopy to simultaneously observe surface charge transfer and bulk lithium diffusion in facet-controlled individual battery particles over a wide range of cycling rates (0.01 – 10C). Our result unambiguously reveals that dynamic asymmetry between fast charging and discharging originates from auto-inhibitory Li-rich and autocatalytic Li-poor surface domains, respectively. In addition, we developed synchrotron-based operando fast XRD to track phase evolution during fast cycling. We directly observed that sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by electrochemically manipulating the lithium-ion concentration distribution within NCM particles, phase separation pathway could be redirected to solid-solution kinetics even at 7 C-rate. Our work lays the groundwork for developing high-power applications and ultrafast charging protocols Figure 1","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01472522mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Lithium-ion insertion kinetics fundamentally hinges upon phase transformation behavior during (dis)charging and understanding the rate-dependent kinetics is crucial for the development of high-power batteries. At high c-rates, kinetic hysteresis is amplified and phase evolution becomes heterogeneous and unpredictable. Specifically, discharge becomes more sluggish than charging of most battery electrodes including LiNi x Mn y Co z O 2 (NMC) and LiFePO 4 (LFP). Here, we developed an operando soft x-ray microscopy to simultaneously observe surface charge transfer and bulk lithium diffusion in facet-controlled individual battery particles over a wide range of cycling rates (0.01 – 10C). Our result unambiguously reveals that dynamic asymmetry between fast charging and discharging originates from auto-inhibitory Li-rich and autocatalytic Li-poor surface domains, respectively. In addition, we developed synchrotron-based operando fast XRD to track phase evolution during fast cycling. We directly observed that sluggish Li diffusion at high Li content induces different phase transformations during charging and discharging, with strong phase separation and homogeneous phase transformation during charging and discharging, respectively. Moreover, by electrochemically manipulating the lithium-ion concentration distribution within NCM particles, phase separation pathway could be redirected to solid-solution kinetics even at 7 C-rate. Our work lays the groundwork for developing high-power applications and ultrafast charging protocols Figure 1
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于同步加速器的Operando XRD和Operando扫描x射线显微镜研究了高c速率动态锂(de)插入途径
锂离子插入动力学从根本上取决于(不)充电过程中的相变行为,了解速率相关动力学对大功率电池的发展至关重要。在高碳率下,动力学滞后被放大,相演化变得不均匀和不可预测。具体来说,包括LiNi x Mn y Co z o2 (NMC)和lifepo4 (LFP)在内的大多数电池电极的放电比充电更缓慢。在这里,我们开发了一种operando软x射线显微镜,在宽循环速率(0.01 - 10℃)范围内同时观察facet控制的单个电池颗粒中的表面电荷转移和大块锂扩散。我们的研究结果明确地表明,快速充电和快速放电之间的动态不对称分别源于自抑制富锂和自催化贫锂表面结构域。此外,我们开发了基于同步加速器的operando快速XRD来跟踪快速循环过程中的相演化。我们直接观察到,在高Li含量下,缓慢的Li扩散在充放电过程中引起了不同的相变,在充放电过程中分别发生了强烈的相分离和均匀的相变。此外,通过电化学控制NCM颗粒内锂离子浓度分布,即使在7c -速率下,相分离途径也可以重定向到固溶动力学。我们的工作为开发高功率应用和超快充电协议奠定了基础(图1)
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox Tolerant Solid Oxide Electrolysis Cathode for CO2 and Steam (Keynote) Releasing the Bubbles: Efficient Phase Separation in (Photo-)Electrochemical Devices in Microgravity Environment Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis GC:BiFE As an Useful Tool for the Quantification of Health Harmful Organic Compounds in Artisanal Spiritus Beverages Via ADSV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1