{"title":"Modeling Electrochemical Migration and Growth of Isolated Metal Particles","authors":"Shakul Pathak, Martin Z. Bazant","doi":"10.1149/ma2023-01442416mtgabs","DOIUrl":null,"url":null,"abstract":"Electrokinetic phenomena within complex structures are relevant in microfluidics. For example, ion concentration polarization is used for electrokinetic trapping for enhanced biosensing using molecular probes 1 . Concentration polarization near ion-selective membranes also plays an important role in separation systems for desalination 2 . Aside from microfluidics, electrochemical growth-dissolution phenomenon has been reported in lithium ion battery systems where lithium plating and subsequent growth of dendrites can exacerbate the loss of cyclable lithium through the formation of isolated Lithium (i-Li) islands 3 . Initially thought to be “dead”, these islands were shown to migrate from one electrode to the other through a deposition-dissolution mechanism 3 . We present a mathematical solution for the growth and migration of an electrochemically active metal particle in a background current. A broad range of phenomena such as viscous fingering 4 , diffusion-limited aggregation 4 and electrochemical deposition 5 follow Laplacian growth and have been traditionally described using conformal map-dynamics in two dimensions. Some non-Laplacian phenomena like electrochemical transport 6,7 and advection-diffusion-limited aggregation 6 fall into the conformally invariant category 8 and can still be simplified using conformal-mapping techniques. Our solution applies conformal mapping to the non-Laplacian growth of the metal particle to evaluate the role of particle morphology in the evolution of the phase boundary. In addition to migration, dissolution-deposition was found to lead to formation of cusps on the phase boundary under certain conditions. The solution is applicable for a general class of problems with a reactive post or particle in an applied background flux. Analytical solutions such as the one presented here are expected to augment numerical simulations and lead to expressions that capture conditions for the onset of morphological instabilities. References S. Park, B. Sabbagh, R. Abu-Rjal, and G. Yossifon, Lab Chip , 22 , 814–825 (2022) https://pubs.rsc.org/en/content/articlehtml/2022/lc/d1lc00864a. D. Deng et al., Desalination , 357 , 77–83 (2015). F. Liu et al., Nature 2021 600:7890 , 600 , 659–663 (2021) https://www.nature.com/articles/s41586-021-04168-w. J. Mathiesen, I. Procaccia, H. L. Swinney, and M. Thrasher, Europhys Lett , 76 , 257 (2006) https://iopscience.iop.org/article/10.1209/epl/i2006-10246-x. D. A. Kessler, J. Koplik, and H. Levine, http://dx.doi.org/10.1080/00018738800101379 , 37 , 255–339 (2006) https://www.tandfonline.com/doi/abs/10.1080/00018738800101379. M. Z. Bazant, J. Choi, and B. Davidovitch, Phys Rev Lett , 91 , 045503 (2003) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.045503. Z. Gu et al., Phys Rev Fluids , 7 , 033701 (2022) https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.7.033701. M. Z. Bazant, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences , 460 , 1433–1452 (2004) https://royalsocietypublishing.org/doi/10.1098/rspa.2003.1218.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01442416mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrokinetic phenomena within complex structures are relevant in microfluidics. For example, ion concentration polarization is used for electrokinetic trapping for enhanced biosensing using molecular probes 1 . Concentration polarization near ion-selective membranes also plays an important role in separation systems for desalination 2 . Aside from microfluidics, electrochemical growth-dissolution phenomenon has been reported in lithium ion battery systems where lithium plating and subsequent growth of dendrites can exacerbate the loss of cyclable lithium through the formation of isolated Lithium (i-Li) islands 3 . Initially thought to be “dead”, these islands were shown to migrate from one electrode to the other through a deposition-dissolution mechanism 3 . We present a mathematical solution for the growth and migration of an electrochemically active metal particle in a background current. A broad range of phenomena such as viscous fingering 4 , diffusion-limited aggregation 4 and electrochemical deposition 5 follow Laplacian growth and have been traditionally described using conformal map-dynamics in two dimensions. Some non-Laplacian phenomena like electrochemical transport 6,7 and advection-diffusion-limited aggregation 6 fall into the conformally invariant category 8 and can still be simplified using conformal-mapping techniques. Our solution applies conformal mapping to the non-Laplacian growth of the metal particle to evaluate the role of particle morphology in the evolution of the phase boundary. In addition to migration, dissolution-deposition was found to lead to formation of cusps on the phase boundary under certain conditions. The solution is applicable for a general class of problems with a reactive post or particle in an applied background flux. Analytical solutions such as the one presented here are expected to augment numerical simulations and lead to expressions that capture conditions for the onset of morphological instabilities. References S. Park, B. Sabbagh, R. Abu-Rjal, and G. Yossifon, Lab Chip , 22 , 814–825 (2022) https://pubs.rsc.org/en/content/articlehtml/2022/lc/d1lc00864a. D. Deng et al., Desalination , 357 , 77–83 (2015). F. Liu et al., Nature 2021 600:7890 , 600 , 659–663 (2021) https://www.nature.com/articles/s41586-021-04168-w. J. Mathiesen, I. Procaccia, H. L. Swinney, and M. Thrasher, Europhys Lett , 76 , 257 (2006) https://iopscience.iop.org/article/10.1209/epl/i2006-10246-x. D. A. Kessler, J. Koplik, and H. Levine, http://dx.doi.org/10.1080/00018738800101379 , 37 , 255–339 (2006) https://www.tandfonline.com/doi/abs/10.1080/00018738800101379. M. Z. Bazant, J. Choi, and B. Davidovitch, Phys Rev Lett , 91 , 045503 (2003) https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.045503. Z. Gu et al., Phys Rev Fluids , 7 , 033701 (2022) https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.7.033701. M. Z. Bazant, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences , 460 , 1433–1452 (2004) https://royalsocietypublishing.org/doi/10.1098/rspa.2003.1218.
复杂结构中的电动力学现象与微流体有关。例如,离子浓度极化用于利用分子探针增强生物传感的电动捕获1。离子选择膜附近的浓度极化在脱盐分离系统中也起着重要作用。除了微流体外,在锂离子电池系统中也有电化学生长-溶解现象的报道,其中锂电镀和随后的枝晶生长可以通过形成孤立的锂(i-Li)岛而加剧可循环锂的损失3。这些岛最初被认为是“死的”,但它们通过沉积-溶解机制从一个电极迁移到另一个电极。我们提出了电化学活性金属粒子在背景电流中生长和迁移的数学解。广泛的现象,如粘指动、扩散受限聚集和电化学沉积,都遵循拉普拉斯生长,传统上使用二维保角映射动力学来描述。一些非拉普拉斯现象,如电化学输运6,7和平流-扩散-有限聚集6,属于共形不变的类别8,仍然可以使用共形映射技术进行简化。我们的解决方案将保角映射应用于金属颗粒的非拉普拉斯生长,以评估颗粒形态在相边界演化中的作用。除了迁移外,在一定条件下,溶解-沉积还会导致相界上形成尖点。该解决方案适用于在施加的背景通量中具有活性柱或粒子的一般类型的问题。本文中提出的解析解有望增强数值模拟,并得出能够捕捉形态不稳定发生条件的表达式。参考文献S. Park, B. Sabbagh, R. Abu-Rjal和G. Yossifon, Lab Chip, 22,814 - 825 (2022) https://pubs.rsc.org/en/content/articlehtml/2022/lc/d1lc00864a。邓丹等,海水淡化,357,77-83(2015)。刘峰等,自然科学学报,2021,600,659-663 (2021)https://www.nature.com/articles/s41586-021-04168-w。J. Mathiesen, I. Procaccia, H. L. Swinney, M. Thrasher, Europhys, 76, 257 (2006) https://iopscience.iop.org/article/10.1209/epl/i2006-10246-x。D. A. Kessler, J. Koplik和H. Levine, http://dx.doi.org/10.1080/00018738800101379, 37, 255-339 (2006) https://www.tandfonline.com/doi/abs/10.1080/00018738800101379。M. Z. Bazant, J. Choi, B. Davidovitch,物理学报,91,045503 (2003)https://journals.aps.org/prl/abstract/10.1103/PhysRevLett.91.045503。古中等,物理学报,7,033701 (2022)https://journals.aps.org/prfluids/abstract/10.1103/PhysRevFluids.7.033701。m.z. Bazant,《伦敦皇家学会学报》。A辑:数学、物理与工程科学,460,1433-1452 (2004)https://royalsocietypublishing.org/doi/10.1098/rspa.2003.1218。