Fabian Rosner, Mike C Tucker, Boxun Hu, Hanna Breunig
{"title":"Techno-Economic Analysis of Electrochemical Refineries Using Solid Oxide Cells for Oxidative Coupling of Methane","authors":"Fabian Rosner, Mike C Tucker, Boxun Hu, Hanna Breunig","doi":"10.1149/ma2023-0154322mtgabs","DOIUrl":null,"url":null,"abstract":"With the shift away from fossil resources, there is a need for alternative pathways to carbon-based commodities such as ethylene. The electrochemical oxidative coupling of methane (OCM) enables the synthesis of higher hydrocarbons from simple organic molecules i.e., methane and has the potential to replace conventional ethylene production in the future. However, current solid oxide OCM cell development is still in an early stage and more comprehensive system-level analyses are needed to better understand operating conditions and economics to guide research and development. For this purpose, process models and new integration strategies for the electrochemical OCM process were developed. The integration of the electrochemical OCM unit into the plant revealed to be challenging based on current solid oxide cell designs and will be discussed as part of this presentation. The performance of the OCM plant is benchmarked against current state-of-the-art ethane steam cracker plants. In this context, key performance metrics are efficiency, direct and indirect carbon dioxide emissions, power consumption, plant cost and cost of ethylene. Of particular interest are aspects of hydrogen co-production and carbon dioxide utilization as well as the impact of carbon dioxide emission factors from the grid, which have shown to be of particular importance for electrochemical processes. Moreover, critical aspects of heat integration will be discussed including fuel pre-heating, carbon deposition and thermal cell management. The analysis will provide new insights into economic cost driving factors and the impact of cell cost, current density, overpotentials and Faraday efficiency upon the cost of ethylene. Based upon this information, performance targets will be recommended that will allow electrochemical OCM to become economically competitive in a free market environment.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"15 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-0154322mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
With the shift away from fossil resources, there is a need for alternative pathways to carbon-based commodities such as ethylene. The electrochemical oxidative coupling of methane (OCM) enables the synthesis of higher hydrocarbons from simple organic molecules i.e., methane and has the potential to replace conventional ethylene production in the future. However, current solid oxide OCM cell development is still in an early stage and more comprehensive system-level analyses are needed to better understand operating conditions and economics to guide research and development. For this purpose, process models and new integration strategies for the electrochemical OCM process were developed. The integration of the electrochemical OCM unit into the plant revealed to be challenging based on current solid oxide cell designs and will be discussed as part of this presentation. The performance of the OCM plant is benchmarked against current state-of-the-art ethane steam cracker plants. In this context, key performance metrics are efficiency, direct and indirect carbon dioxide emissions, power consumption, plant cost and cost of ethylene. Of particular interest are aspects of hydrogen co-production and carbon dioxide utilization as well as the impact of carbon dioxide emission factors from the grid, which have shown to be of particular importance for electrochemical processes. Moreover, critical aspects of heat integration will be discussed including fuel pre-heating, carbon deposition and thermal cell management. The analysis will provide new insights into economic cost driving factors and the impact of cell cost, current density, overpotentials and Faraday efficiency upon the cost of ethylene. Based upon this information, performance targets will be recommended that will allow electrochemical OCM to become economically competitive in a free market environment.