Hanguang Zhang, John Weiss, Luigi Osmieri, Piotr Zelenay
{"title":"M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction","authors":"Hanguang Zhang, John Weiss, Luigi Osmieri, Piotr Zelenay","doi":"10.1149/ma2023-01261703mtgabs","DOIUrl":null,"url":null,"abstract":"Electrochemical carbon dioxide reduction (CO 2 RR) is a promising approach to converting CO 2 into value-added chemicals using renewable electricity and to ultimately reducing the dependence on fossil resources. However, achieving sufficient activity and selectivity in economically viable CO 2 electrolyzers presents a great challenge for CO 2 RR catalysts. 1 Carbons are an important and particularly suitable component of a majority of CO 2 RR catalysts due to their excellent electronic conductivity, relatively easily achievable high porosity and hierarchical pore structure. 2, 3 Thanks to these benefits, the metal-nitrogen-carbon (M-N-C) materials, containing at least 95 at% of carbon, have attracted special interest due to their promising selectivity for CO in CO 2 RR. 4 In particular, the Ni-N-C support has been used to improve selectivity of Cu-based CO 2 RR catalysts for ethylene, attributed to the enhancement of CO generation during CO 2 RR. 5 However, a comprehensive study is still needed to understand the effect of composition and morphology of M-N-C materials as supports for CO 2 RR. In this presentation, we will summarize the results of our recent study that has focused on the effect of composition (e.g., different metal centers) and morphology (e.g., porosity) of M-N-C supports on the activity and selectivity of metal (e.g., Cu) nanoparticles. We will specifically concentrate on possible advantages/disadvantages of using M-N-C materials as performance enhancing supports rather than autonomous CO 2 RR electrocatalysts. Acknowledgement Research presented in this work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20230065DR. References (1) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology 2021 , 16 (2), 118-128. (2) Jhong, H.-R. M.; Tornow, C. E.; Kim, C.; Verma, S.; Oberst, J. L.; Anderson, P. S.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2. ChemPhysChem 2017 , 18 (22), 3274-3279. (3) Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A.; et al. CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis 2014 , 4 (10), 3682-3695. (4) Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical Reduction of CO2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021 , 8 (24), 2102886. (5) Wang, X.; de Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nature Nanotechnology 2019 , 14 (11), 1063-1070.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01261703mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
Abstract
Electrochemical carbon dioxide reduction (CO 2 RR) is a promising approach to converting CO 2 into value-added chemicals using renewable electricity and to ultimately reducing the dependence on fossil resources. However, achieving sufficient activity and selectivity in economically viable CO 2 electrolyzers presents a great challenge for CO 2 RR catalysts. 1 Carbons are an important and particularly suitable component of a majority of CO 2 RR catalysts due to their excellent electronic conductivity, relatively easily achievable high porosity and hierarchical pore structure. 2, 3 Thanks to these benefits, the metal-nitrogen-carbon (M-N-C) materials, containing at least 95 at% of carbon, have attracted special interest due to their promising selectivity for CO in CO 2 RR. 4 In particular, the Ni-N-C support has been used to improve selectivity of Cu-based CO 2 RR catalysts for ethylene, attributed to the enhancement of CO generation during CO 2 RR. 5 However, a comprehensive study is still needed to understand the effect of composition and morphology of M-N-C materials as supports for CO 2 RR. In this presentation, we will summarize the results of our recent study that has focused on the effect of composition (e.g., different metal centers) and morphology (e.g., porosity) of M-N-C supports on the activity and selectivity of metal (e.g., Cu) nanoparticles. We will specifically concentrate on possible advantages/disadvantages of using M-N-C materials as performance enhancing supports rather than autonomous CO 2 RR electrocatalysts. Acknowledgement Research presented in this work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20230065DR. References (1) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology 2021 , 16 (2), 118-128. (2) Jhong, H.-R. M.; Tornow, C. E.; Kim, C.; Verma, S.; Oberst, J. L.; Anderson, P. S.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2. ChemPhysChem 2017 , 18 (22), 3274-3279. (3) Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A.; et al. CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis 2014 , 4 (10), 3682-3695. (4) Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical Reduction of CO2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021 , 8 (24), 2102886. (5) Wang, X.; de Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nature Nanotechnology 2019 , 14 (11), 1063-1070.