M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction

Hanguang Zhang, John Weiss, Luigi Osmieri, Piotr Zelenay
{"title":"M-N-C-Supported Catalysts for Carbon Dioxide Reduction Reaction","authors":"Hanguang Zhang, John Weiss, Luigi Osmieri, Piotr Zelenay","doi":"10.1149/ma2023-01261703mtgabs","DOIUrl":null,"url":null,"abstract":"Electrochemical carbon dioxide reduction (CO 2 RR) is a promising approach to converting CO 2 into value-added chemicals using renewable electricity and to ultimately reducing the dependence on fossil resources. However, achieving sufficient activity and selectivity in economically viable CO 2 electrolyzers presents a great challenge for CO 2 RR catalysts. 1 Carbons are an important and particularly suitable component of a majority of CO 2 RR catalysts due to their excellent electronic conductivity, relatively easily achievable high porosity and hierarchical pore structure. 2, 3 Thanks to these benefits, the metal-nitrogen-carbon (M-N-C) materials, containing at least 95 at% of carbon, have attracted special interest due to their promising selectivity for CO in CO 2 RR. 4 In particular, the Ni-N-C support has been used to improve selectivity of Cu-based CO 2 RR catalysts for ethylene, attributed to the enhancement of CO generation during CO 2 RR. 5 However, a comprehensive study is still needed to understand the effect of composition and morphology of M-N-C materials as supports for CO 2 RR. In this presentation, we will summarize the results of our recent study that has focused on the effect of composition (e.g., different metal centers) and morphology (e.g., porosity) of M-N-C supports on the activity and selectivity of metal (e.g., Cu) nanoparticles. We will specifically concentrate on possible advantages/disadvantages of using M-N-C materials as performance enhancing supports rather than autonomous CO 2 RR electrocatalysts. Acknowledgement Research presented in this work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20230065DR. References (1) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology 2021 , 16 (2), 118-128. (2) Jhong, H.-R. M.; Tornow, C. E.; Kim, C.; Verma, S.; Oberst, J. L.; Anderson, P. S.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2. ChemPhysChem 2017 , 18 (22), 3274-3279. (3) Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A.; et al. CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis 2014 , 4 (10), 3682-3695. (4) Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical Reduction of CO2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021 , 8 (24), 2102886. (5) Wang, X.; de Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nature Nanotechnology 2019 , 14 (11), 1063-1070.","PeriodicalId":11461,"journal":{"name":"ECS Meeting Abstracts","volume":"92 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-08-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"ECS Meeting Abstracts","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1149/ma2023-01261703mtgabs","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Electrochemical carbon dioxide reduction (CO 2 RR) is a promising approach to converting CO 2 into value-added chemicals using renewable electricity and to ultimately reducing the dependence on fossil resources. However, achieving sufficient activity and selectivity in economically viable CO 2 electrolyzers presents a great challenge for CO 2 RR catalysts. 1 Carbons are an important and particularly suitable component of a majority of CO 2 RR catalysts due to their excellent electronic conductivity, relatively easily achievable high porosity and hierarchical pore structure. 2, 3 Thanks to these benefits, the metal-nitrogen-carbon (M-N-C) materials, containing at least 95 at% of carbon, have attracted special interest due to their promising selectivity for CO in CO 2 RR. 4 In particular, the Ni-N-C support has been used to improve selectivity of Cu-based CO 2 RR catalysts for ethylene, attributed to the enhancement of CO generation during CO 2 RR. 5 However, a comprehensive study is still needed to understand the effect of composition and morphology of M-N-C materials as supports for CO 2 RR. In this presentation, we will summarize the results of our recent study that has focused on the effect of composition (e.g., different metal centers) and morphology (e.g., porosity) of M-N-C supports on the activity and selectivity of metal (e.g., Cu) nanoparticles. We will specifically concentrate on possible advantages/disadvantages of using M-N-C materials as performance enhancing supports rather than autonomous CO 2 RR electrocatalysts. Acknowledgement Research presented in this work was supported by the Laboratory Directed Research and Development program of Los Alamos National Laboratory under project number 20230065DR. References (1) Masel, R. I.; Liu, Z.; Yang, H.; Kaczur, J. J.; Carrillo, D.; Ren, S.; Salvatore, D.; Berlinguette, C. P. An industrial perspective on catalysts for low-temperature CO2 electrolysis. Nature Nanotechnology 2021 , 16 (2), 118-128. (2) Jhong, H.-R. M.; Tornow, C. E.; Kim, C.; Verma, S.; Oberst, J. L.; Anderson, P. S.; Gewirth, A. A.; Fujigaya, T.; Nakashima, N.; Kenis, P. J. A. Gold Nanoparticles on Polymer-Wrapped Carbon Nanotubes: An Efficient and Selective Catalyst for the Electroreduction of CO2. ChemPhysChem 2017 , 18 (22), 3274-3279. (3) Baturina, O. A.; Lu, Q.; Padilla, M. A.; Xin, L.; Li, W.; Serov, A.; Artyushkova, K.; Atanassov, P.; Xu, F.; Epshteyn, A.; et al. CO2 Electroreduction to Hydrocarbons on Carbon-Supported Cu Nanoparticles. ACS Catalysis 2014 , 4 (10), 3682-3695. (4) Liang, S.; Huang, L.; Gao, Y.; Wang, Q.; Liu, B. Electrochemical Reduction of CO2 to CO over Transition Metal/N-Doped Carbon Catalysts: The Active Sites and Reaction Mechanism. Advanced Science 2021 , 8 (24), 2102886. (5) Wang, X.; de Araújo, J. F.; Ju, W.; Bagger, A.; Schmies, H.; Kühl, S.; Rossmeisl, J.; Strasser, P. Mechanistic reaction pathways of enhanced ethylene yields during electroreduction of CO2–CO co-feeds on Cu and Cu-tandem electrocatalysts. Nature Nanotechnology 2019 , 14 (11), 1063-1070.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
m - n - c负载型二氧化碳还原反应催化剂
电化学二氧化碳还原(CO 2 RR)是利用可再生电力将CO 2转化为增值化学品并最终减少对化石资源依赖的一种很有前途的方法。然而,在经济可行的CO 2电解槽中实现足够的活性和选择性对CO 2 RR催化剂来说是一个巨大的挑战。由于碳具有优异的电子导电性,相对容易实现的高孔隙率和分层孔隙结构,因此碳是大多数CO 2 RR催化剂的重要且特别合适的组分。由于这些优点,含有至少95% ~ %碳的金属-氮-碳(M-N-C)材料因其在CO 2 RR中对CO的选择性而引起了人们的特别关注。特别是,Ni-N-C载体已被用于提高cu基CO 2 RR催化剂对乙烯的选择性,这是由于CO 2 RR过程中CO生成的增强。然而,M-N-C材料的组成和形貌对CO 2 RR的支持作用仍需要进行全面的研究。在这次演讲中,我们将总结我们最近的研究结果,这些研究主要集中在M-N-C载体的组成(例如,不同的金属中心)和形态(例如,孔隙率)对金属(例如,Cu)纳米颗粒的活性和选择性的影响。我们将特别关注使用M-N-C材料作为性能增强支撑而不是自主co2 RR电催化剂的可能优点/缺点。本工作中的研究得到了洛斯阿拉莫斯国家实验室实验室指导研究与发展计划的支持,项目编号为20230065DR。参考文献(1)Masel, r.i.;刘,z;杨,h;J. J.卡兹尔;Carrillo d;任,美国;萨尔瓦多,d;低温CO2电解催化剂的工业前景。自然纳米技术,2021,16(2),118-128。(2)钟,H.-R.;m;托诺,c.e.;金,c;Verma美国;奥伯斯特,j.l.;安德森,p.s.;格沃斯,a.a.;Fujigaya t;中岛美嘉:;金纳米粒子在聚合物包裹碳纳米管上的应用:一种高效、选择性的CO2电还原催化剂。化学物理学报,2017,18(22),3274-3279。(3)巴图琳娜,o.a.;陆,问:;帕迪拉,文学硕士;鑫,l;李,w;Serov, a;Artyushkova k;Atanassov p;徐,f;Epshteyn, a;et al。碳载Cu纳米颗粒上CO2电还原成碳氢化合物。生物质化学工程学报,2014,35(6),369 -369。(4)梁,S.;黄,l;高,y;问:王;刘斌。过渡金属/ n掺杂碳催化剂上电化学还原CO2为CO:活性位点和反应机理。科学进展,2021,8(24),2102886。(5)王欣;de Araújo, j.f.;居,w;装袋机,a;Schmies h;库尔,美国;Rossmeisl, j .;Cu和Cu-串联电催化剂上co- co共进电还原过程中乙烯收率提高的机理反应途径。自然纳米技术,2019,14(11),1063-1070。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Redox Tolerant Solid Oxide Electrolysis Cathode for CO2 and Steam (Keynote) Releasing the Bubbles: Efficient Phase Separation in (Photo-)Electrochemical Devices in Microgravity Environment Phase Stability of SrTi1-XFexO3- δ Under Solid Oxide Cell Fuel-Electrode Conditions: Implications for Related Exsolution Electrode Materials Long-Term Stability of Perovskite-Based Fuel Electrode Material Sr2Fe2-XMoxO6-δ – GDC for Enhanced High-Temperature Steam and CO2 Electrolysis GC:BiFE As an Useful Tool for the Quantification of Health Harmful Organic Compounds in Artisanal Spiritus Beverages Via ADSV
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1