{"title":"Multi-Objective Optimization of a Bi-Metal High-Temperature Recuperator for Application in Concentrating Solar Power","authors":"Jacob A. Bryan, Aiden S. Meek, Hailei Wang","doi":"10.1115/1.4062522","DOIUrl":null,"url":null,"abstract":"Abstract Supercritical CO2 closed Brayton cycles are a major candidate for future power cycle designs in concentrating solar power applications, with high-temperature recuperators playing an essential role in realizing their high thermal efficiency. Printed circuit heat exchangers (PCHEs) are often chosen for this role due to their thermal-hydraulic and mechanical performance at high temperatures and pressures, all while remaining compact. However, PCHEs can be costly because of the high-performance materials demanded in these applications, and the heat exchanger internal geometry is restricted by their manufacturing process. Additively manufactured heat exchangers can address both of these shortcomings. This work proposes a modular bi-metal high-temperature recuperator with integrated headers to be produced with additive manufacturing. Beginning with existing PCHE channel geometries, a 1D heat exchanger model is developed. Then, multi-objective optimization is used to maximize the heat transfer effectiveness of a lab-scale device while limiting its size. Two distinct channel geometries emerge from the optimization. Optimal designs achieve up to 88% effectiveness with negligible pressure drop. Deterioration of effectiveness due to axial conduction of heat in the heat exchanger walls is found to be a notable problem for lab-scale PCHEs, and the optimal designs obtained here minimize its detrimental effects. A sensitivity analysis reveals that the effectiveness of the recuperator is much less sensitive to variation in mass flowrate in off-design operation when axial conduction is significant, while increasing the length of the device easily increases effectiveness.","PeriodicalId":15676,"journal":{"name":"Journal of Energy Resources Technology-transactions of The Asme","volume":"275 1","pages":"0"},"PeriodicalIF":2.6000,"publicationDate":"2023-06-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Energy Resources Technology-transactions of The Asme","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4062522","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
引用次数: 0
Abstract
Abstract Supercritical CO2 closed Brayton cycles are a major candidate for future power cycle designs in concentrating solar power applications, with high-temperature recuperators playing an essential role in realizing their high thermal efficiency. Printed circuit heat exchangers (PCHEs) are often chosen for this role due to their thermal-hydraulic and mechanical performance at high temperatures and pressures, all while remaining compact. However, PCHEs can be costly because of the high-performance materials demanded in these applications, and the heat exchanger internal geometry is restricted by their manufacturing process. Additively manufactured heat exchangers can address both of these shortcomings. This work proposes a modular bi-metal high-temperature recuperator with integrated headers to be produced with additive manufacturing. Beginning with existing PCHE channel geometries, a 1D heat exchanger model is developed. Then, multi-objective optimization is used to maximize the heat transfer effectiveness of a lab-scale device while limiting its size. Two distinct channel geometries emerge from the optimization. Optimal designs achieve up to 88% effectiveness with negligible pressure drop. Deterioration of effectiveness due to axial conduction of heat in the heat exchanger walls is found to be a notable problem for lab-scale PCHEs, and the optimal designs obtained here minimize its detrimental effects. A sensitivity analysis reveals that the effectiveness of the recuperator is much less sensitive to variation in mass flowrate in off-design operation when axial conduction is significant, while increasing the length of the device easily increases effectiveness.
期刊介绍:
Specific areas of importance including, but not limited to: Fundamentals of thermodynamics such as energy, entropy and exergy, laws of thermodynamics; Thermoeconomics; Alternative and renewable energy sources; Internal combustion engines; (Geo) thermal energy storage and conversion systems; Fundamental combustion of fuels; Energy resource recovery from biomass and solid wastes; Carbon capture; Land and offshore wells drilling; Production and reservoir engineering;, Economics of energy resource exploitation