Recent progress of PY-IT-based all-polymer solar cells

APL Energy Pub Date : 2023-11-10 DOI:10.1063/5.0170931
Xu Liu, Mengzhen Sha, Hang Yin, Xiaotao Hao
{"title":"Recent progress of PY-IT-based all-polymer solar cells","authors":"Xu Liu, Mengzhen Sha, Hang Yin, Xiaotao Hao","doi":"10.1063/5.0170931","DOIUrl":null,"url":null,"abstract":"All-polymer solar cells (all-PSCs), with their specific merits of superior operation stability and remarkable mechanical flexibility, have made significant progress and become an indispensable part of the field of organic solar cells (OSCs) in recent years. This progress has established them as an indispensable component of the OSC landscape. One of the key driving forces behind this advancement is the development of high-performance polymer acceptor materials. Notably, the emergence of cutting-edge Y series polymerized small-molecule acceptors such as PY-IT, PYT, PY-2Cl, PY-V-γ, and PYF-T-o has significantly narrowed the efficiency gap when compared to the OSCs relying on small-molecule acceptors. Here, we systematically delve into the recent development of PY-IT-based OSCs. First, we offer a detailed discussion about the device physics of PY-IT-based OSCs and then illustrate their achievements from three aspects: binary systems, ternary systems, and layer-by-layer structures. Moreover, current challenges and outlooks are proposed for future research directions. We expect that our work will inspire further breakthroughs and improvements in the fields of all-PSCs.","PeriodicalId":486383,"journal":{"name":"APL Energy","volume":"89 10","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"APL Energy","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1063/5.0170931","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

All-polymer solar cells (all-PSCs), with their specific merits of superior operation stability and remarkable mechanical flexibility, have made significant progress and become an indispensable part of the field of organic solar cells (OSCs) in recent years. This progress has established them as an indispensable component of the OSC landscape. One of the key driving forces behind this advancement is the development of high-performance polymer acceptor materials. Notably, the emergence of cutting-edge Y series polymerized small-molecule acceptors such as PY-IT, PYT, PY-2Cl, PY-V-γ, and PYF-T-o has significantly narrowed the efficiency gap when compared to the OSCs relying on small-molecule acceptors. Here, we systematically delve into the recent development of PY-IT-based OSCs. First, we offer a detailed discussion about the device physics of PY-IT-based OSCs and then illustrate their achievements from three aspects: binary systems, ternary systems, and layer-by-layer structures. Moreover, current challenges and outlooks are proposed for future research directions. We expect that our work will inspire further breakthroughs and improvements in the fields of all-PSCs.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
py - it基全聚合物太阳能电池研究进展
近年来,全聚合物太阳能电池(all-PSCs)以其优越的运行稳定性和优异的机械柔性等特殊优点,取得了长足的发展,成为有机太阳能电池(OSCs)领域不可缺少的重要组成部分。这一进展使它们成为OSC格局中不可或缺的组成部分。这一进步背后的关键驱动力之一是高性能聚合物受体材料的发展。值得注意的是,PY-IT、PYT、PY-2Cl、PY-V-γ、PYF-T-o等前沿Y系列聚合小分子受体的出现,与依赖小分子受体的OSCs相比,显著缩小了效率差距。在这里,我们系统地深入研究了基于py - it的osc的最新发展。首先,我们详细讨论了基于py - it的OSCs的器件物理特性,然后从二进制系统、三元系统和逐层结构三个方面说明了他们的成就。并对未来的研究方向提出了挑战和展望。我们期望我们的工作将激发全psc领域的进一步突破和改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Effect of localization–delocalization transition on thermoelectric properties of Bi2Te2Se topological insulator Photovoltaic limitations of FAPbI3 nanocrystal solar cells associated with ligand washing processes Electrolyte design for reversible metal electrodeposition-based electrochromic energy-saving devices Simple model of power generation in thermoradiative devices including realistic nonradiative processes Erratum: “Outdoor stability testing of perovskite solar cells: Necessary step toward real-life applications” [APL Energy 1, 020903 (2023)]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1