{"title":"UAV mission scheduling with completion time, flight distance, and resource consumption constraints","authors":"Keqin Li","doi":"10.1080/09540091.2023.2281250","DOIUrl":null,"url":null,"abstract":"Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems.","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":"68 2","pages":"0"},"PeriodicalIF":3.2000,"publicationDate":"2023-11-10","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2023.2281250","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0
Abstract
Unmanned aerial vehicles (UAVs) are widely used in various military and civilian applications. UAV mission scheduling is a key issue in UAV applications and a central topic in UAV research. UAV task scheduling should include several constraints into consideration, such as completion time constraint, flight distance constraint, and resource consumption constraint. Furthermore, UAV task scheduling should be studied within the traditional framework of combinatorial optimisation. In this paper, we consider optimal mission scheduling for heterogeneous UAVs with completion time, flight distance, and resource consumption constraints. The contributions of the paper are summarised as follows. We define two combinatorial optimisation problems, namely, the NFTM (number of finished tasks maximisation) problem and the RFTM (reward of finished tasks maximisation) problem. We construct an algorithmic framework for both NFTM and RFTM problems, so that our heuristic algorithms (four for NFTM and two for RFTM) can be presented in a unified way. We derive upper bounds for optimal solutions, so that our heuristic solutions can be compared with optimal solutions. We experimentally evaluate the performance of our heuristic algorithms. To the best of our knowledge, this is the first paper studying UAV mission scheduling with time, distance, and resource constraints as combinatorial optimisation problems.
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.