Adaptive warehouse storage location assignment with considerations to order-picking efficiency and worker safety

IF 4 Q2 ENGINEERING, INDUSTRIAL Journal of Industrial and Production Engineering Pub Date : 2023-10-09 DOI:10.1080/21681015.2023.2263009
Amir Zarinchang, Kevin Lee, Iman Avazpour, Jun Yang, Dongxing Zhang, George K. Knopf
{"title":"Adaptive warehouse storage location assignment with considerations to order-picking efficiency and worker safety","authors":"Amir Zarinchang, Kevin Lee, Iman Avazpour, Jun Yang, Dongxing Zhang, George K. Knopf","doi":"10.1080/21681015.2023.2263009","DOIUrl":null,"url":null,"abstract":"Smart warehouses require software-based decision-making tools to manage the receiving, storing, and picking of products. A major challenge in achieving efficient operations is deciding where to store products associated with incoming orders. The storage location assignment problem (SLAP) is more complex in large-size warehouses due to several functional objectives and numerous possible shelving solutions. This paper introduces an artificial intelligence algorithm that seeks to find an acceptable solution to SLAP with presented linear and nonlinear objective functions. The near-optimal technique exploits basin-hopping and simulated-annealing algorithms to find a solution when considering four functional objectives including worker safety, which has not been optimized using similar approaches. The algorithm is experimentally evaluated, and results demonstrate that reasonablely achieved solutions are comparable to those obtained by well-known existing solvers. Furthermore, the problem could be solved with non-linear objectives which is beyond the commercial solvers’ like SCIP capability.","PeriodicalId":16024,"journal":{"name":"Journal of Industrial and Production Engineering","volume":"38 1","pages":"0"},"PeriodicalIF":4.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Industrial and Production Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/21681015.2023.2263009","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, INDUSTRIAL","Score":null,"Total":0}
引用次数: 0

Abstract

Smart warehouses require software-based decision-making tools to manage the receiving, storing, and picking of products. A major challenge in achieving efficient operations is deciding where to store products associated with incoming orders. The storage location assignment problem (SLAP) is more complex in large-size warehouses due to several functional objectives and numerous possible shelving solutions. This paper introduces an artificial intelligence algorithm that seeks to find an acceptable solution to SLAP with presented linear and nonlinear objective functions. The near-optimal technique exploits basin-hopping and simulated-annealing algorithms to find a solution when considering four functional objectives including worker safety, which has not been optimized using similar approaches. The algorithm is experimentally evaluated, and results demonstrate that reasonablely achieved solutions are comparable to those obtained by well-known existing solvers. Furthermore, the problem could be solved with non-linear objectives which is beyond the commercial solvers’ like SCIP capability.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
考虑到拣货效率和工人安全的适应性仓库位置分配
智能仓库需要基于软件的决策工具来管理产品的接收、存储和挑选。实现高效操作的一个主要挑战是决定在哪里存储与传入订单相关的产品。在大型仓库中,由于多个功能目标和多种可能的货架解决方案,存储位置分配问题(SLAP)更加复杂。本文介绍了一种人工智能算法,该算法利用给定的线性和非线性目标函数寻求可接受的SLAP解。近最优技术利用盆地跳跃和模拟退火算法,在考虑包括工人安全在内的四个功能目标时找到解决方案,这些目标尚未使用类似的方法进行优化。实验验证了该算法的有效性,结果表明,该算法所得到的解与现有的知名求解器所得到的解相当。此外,该问题还可以用非线性目标来求解,这超出了商业求解器(如SCIP)的能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
7.50
自引率
6.70%
发文量
21
期刊最新文献
Workshop layout optimization method based on sparrow search algorithm: a new approach On the power and robustness of phase I nonparametric Shewhart-type charts using sequential normal scores Sustainable planning and design for eco-industrial parks using integrated multi-objective optimization and fuzzy analytic hierarchy process Analysis of the BP neural network comprehensive competitiveness evaluation model for the development evaluation of B2B E-commerce enterprises Financial management early warning model of enterprise circular economy based on chaotic particle swarm optimization algorithm
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1