Soheil Moradalizadeh, Heiko Topol, Hasan Demirkoparan, Andrey Melnikov, Bernd Markert, José Merodio
{"title":"Remarks on bifurcation of an inflated and extended swellable isotropic tube","authors":"Soheil Moradalizadeh, Heiko Topol, Hasan Demirkoparan, Andrey Melnikov, Bernd Markert, José Merodio","doi":"10.1177/10812865231190845","DOIUrl":null,"url":null,"abstract":"We consider a tubular membrane whose mechanical behavior is defined by a strain energy density function that combines the neo-Hookean model with the Demiray model. Both, the neo-Hookean and the Demiray models are isotropic material models, which found their application in the modeling of the mechanical behavior of biological soft tissue. This tubular membrane is subjected to an inner pressure, an axial stretch, and a change in the material volume due to swelling or deswelling. The interplay between the cylinder geometry and the loading conditions and different instability modes, namely, bulging bifurcation, bending bifurcation, and prismatic bifurcation, are studied. It is shown that a change in the material volume has a strong effect on the occurrence of these bifurcation modes because a change in the material volume may stabilize the cylinder against a particular bifurcation mode and may trigger another bifurcation mode at the same time. Despite the restriction to isotropic material behavior, this article shows that the material response to pressure, axial stretch, and material volume change is quite complex.","PeriodicalId":49854,"journal":{"name":"Mathematics and Mechanics of Solids","volume":"48 1","pages":"0"},"PeriodicalIF":1.7000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematics and Mechanics of Solids","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1177/10812865231190845","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
Abstract
We consider a tubular membrane whose mechanical behavior is defined by a strain energy density function that combines the neo-Hookean model with the Demiray model. Both, the neo-Hookean and the Demiray models are isotropic material models, which found their application in the modeling of the mechanical behavior of biological soft tissue. This tubular membrane is subjected to an inner pressure, an axial stretch, and a change in the material volume due to swelling or deswelling. The interplay between the cylinder geometry and the loading conditions and different instability modes, namely, bulging bifurcation, bending bifurcation, and prismatic bifurcation, are studied. It is shown that a change in the material volume has a strong effect on the occurrence of these bifurcation modes because a change in the material volume may stabilize the cylinder against a particular bifurcation mode and may trigger another bifurcation mode at the same time. Despite the restriction to isotropic material behavior, this article shows that the material response to pressure, axial stretch, and material volume change is quite complex.
期刊介绍:
Mathematics and Mechanics of Solids is an international peer-reviewed journal that publishes the highest quality original innovative research in solid mechanics and materials science.
The central aim of MMS is to publish original, well-written and self-contained research that elucidates the mechanical behaviour of solids with particular emphasis on mathematical principles. This journal is a member of the Committee on Publication Ethics (COPE).