Urban Flora Structure and Carbon Storage Potential of Woody Trees in Different Land Use Units of Cotonou (West Africa)

IF 2.1 Q3 ENVIRONMENTAL SCIENCES Urban science (Basel, Switzerland) Pub Date : 2023-10-09 DOI:10.3390/urbansci7040106
Assouhan Jonas Atchadé, Madjouma Kanda, Fousseni Folega, Abdoul Aziz Diouf, Symphorien Agbahoungba, Marra Dourma, Kperkouma Wala, Koffi Akpagana
{"title":"Urban Flora Structure and Carbon Storage Potential of Woody Trees in Different Land Use Units of Cotonou (West Africa)","authors":"Assouhan Jonas Atchadé, Madjouma Kanda, Fousseni Folega, Abdoul Aziz Diouf, Symphorien Agbahoungba, Marra Dourma, Kperkouma Wala, Koffi Akpagana","doi":"10.3390/urbansci7040106","DOIUrl":null,"url":null,"abstract":"Urbanization is a current concern, particularly in Africa, where it is expected to continue and increasingly threaten the effectiveness of plant biodiversity, natural carbon sinks, and the sustainability of cities. This paper investigates the structural parameters and carbon storage potential of trees in the land use units of the city of Cotonou in southern Benin. A total of 149 plots at 2500 m2 each were randomly generated, and trees with a diameter ≥ 10 cm were inventoried. ANOVA revealed that the means of structural parameters (diameter and height classes) and carbon stock rate varied significantly (p < 0.001) across land use units in the city. Tree basal area is estimated at 4.52 ± 5.24 m2 ha−1, with an average of 12.72 (13) feet ha−1. The average diameter of the trees is estimated at 57.94 ± 29.71 cm. Approximately 1000 kg ha−1 (0.94 × 103 kg ha−1) of carbon is stored in the city of Cotonou. Green spaces (1.21 × 103 kg ha−1) and roads (1.19 × 103 kg ha−1) are the units that recorded the highest carbon stocks. Khaya senegalensis, Mangifera indica, and Terminalia mentally lead the top ten species with high stock potential. This study demonstrates the contribution of urban trees to global atmospheric carbon reduction, which varies by species, land use units, and tree density. Future research could investigate an i-Tree Landscape approach for urban carbon estimation. This could reinforce urban carbon data availability for urban ecological planning.","PeriodicalId":75284,"journal":{"name":"Urban science (Basel, Switzerland)","volume":"47 1","pages":"0"},"PeriodicalIF":2.1000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Urban science (Basel, Switzerland)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/urbansci7040106","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Urbanization is a current concern, particularly in Africa, where it is expected to continue and increasingly threaten the effectiveness of plant biodiversity, natural carbon sinks, and the sustainability of cities. This paper investigates the structural parameters and carbon storage potential of trees in the land use units of the city of Cotonou in southern Benin. A total of 149 plots at 2500 m2 each were randomly generated, and trees with a diameter ≥ 10 cm were inventoried. ANOVA revealed that the means of structural parameters (diameter and height classes) and carbon stock rate varied significantly (p < 0.001) across land use units in the city. Tree basal area is estimated at 4.52 ± 5.24 m2 ha−1, with an average of 12.72 (13) feet ha−1. The average diameter of the trees is estimated at 57.94 ± 29.71 cm. Approximately 1000 kg ha−1 (0.94 × 103 kg ha−1) of carbon is stored in the city of Cotonou. Green spaces (1.21 × 103 kg ha−1) and roads (1.19 × 103 kg ha−1) are the units that recorded the highest carbon stocks. Khaya senegalensis, Mangifera indica, and Terminalia mentally lead the top ten species with high stock potential. This study demonstrates the contribution of urban trees to global atmospheric carbon reduction, which varies by species, land use units, and tree density. Future research could investigate an i-Tree Landscape approach for urban carbon estimation. This could reinforce urban carbon data availability for urban ecological planning.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
西非科托努不同土地利用单元木本乔木城市植物区系结构及碳储量潜力
城市化是当前的一个问题,特别是在非洲,预计它将继续并日益威胁到植物生物多样性的有效性、天然碳汇和城市的可持续性。本文调查了贝宁南部科托努市土地利用单元中树木的结构参数和碳储存潜力。随机生成面积为2500 m2的样地149块,对直径≥10 cm的树木进行了清查。方差分析显示,结构参数(直径和高度类别)和碳储量均值差异显著(p <0.001)。树基面积估计为4.52±5.24 m2 ha - 1,平均为12.72(13)英尺ha - 1。树木的平均直径估计为57.94±29.71厘米。科托努市储存了大约1000千克公顷- 1 (0.94 × 103千克公顷- 1)的碳。绿地(1.21 × 103 kg ha - 1)和道路(1.19 × 103 kg ha - 1)是碳储量最高的单元。senegalensis、Mangifera indica和Terminalia在心理上居前10位。研究表明,城市树木对全球大气碳减排的贡献随树种、土地利用单位和树木密度的变化而变化。未来的研究可以探索i-Tree景观方法用于城市碳估算。这可以增强城市碳数据在城市生态规划中的可用性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
4.30
自引率
0.00%
发文量
0
审稿时长
11 weeks
期刊最新文献
Mapping Deprived Urban Areas Using Open Geospatial Data and Machine Learning in Africa Developing a Qualitative Urban Green Spaces Index Applied to a Mediterranean City Strengthening Resilient Built Environments through Human Social Capital: A Path to Post-COVID-19 Recovery The Impact of the COVID-19 Pandemic on the Public Transportation System of Montevideo, Uruguay: A Urban Data Analysis Approach Sociodemographic Analysis of Disability in a Highly Depopulated Rural Region: The Case of Soria, Spain
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1