PENDEKATAN DATA MINING UNTUK MEMILIH PRODUK TERLARIS MENGGUNAKAN ALGORITMA NAIVE BAYES

Hidup Perjuangan Rajagukguk, Rahmat Fauzi
{"title":"PENDEKATAN DATA MINING UNTUK MEMILIH PRODUK TERLARIS MENGGUNAKAN ALGORITMA NAIVE BAYES","authors":"Hidup Perjuangan Rajagukguk, Rahmat Fauzi","doi":"10.33884/comasiejournal.v9i7.7892","DOIUrl":null,"url":null,"abstract":"Technological advances today can be exploited to process data into more useful information. In data collection, information collection is especially useful to maximize profits and develop marketing strategies. One way to increase profits is by using data mining techniques to help business actors in making decisions about stocks, increased profits and more. The Matahari Department Store is the largest retail platform in Indonesia, one of the retail stores located in Batam is the Matahari Department store Nagoya Hill Batam. The transaction data on the store that is still processed does not use a method that causes the processing of product sales data to be less effective and less efficient. Seeing from the number of transactions, a system is needed to predict the sale of the best-selling product as long as it can determine the correct stock for the products sold and can increase the profit, sale and purchase of the product. This research was conducted with the aim of applying data mining methods using the Naive Bayes Classifier algorithm to select the best-selling products in the outlet of the Matahari Nagoya Hill Batam Department Store. By using the collected sales data, the system is expected to increase profits steadily and avoid shortages of product stocks. Through analysis using the Naive Bayes Classifier method, the study achieved an accuracy of 67% and obtained a bag sales result to be the best-selling sale during January 2023 through March 2023 with a sales percentage of 20%.","PeriodicalId":500489,"journal":{"name":"Computer and Science Industrial Engineering (COMASIE)","volume":"7 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computer and Science Industrial Engineering (COMASIE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.33884/comasiejournal.v9i7.7892","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

Abstract

Technological advances today can be exploited to process data into more useful information. In data collection, information collection is especially useful to maximize profits and develop marketing strategies. One way to increase profits is by using data mining techniques to help business actors in making decisions about stocks, increased profits and more. The Matahari Department Store is the largest retail platform in Indonesia, one of the retail stores located in Batam is the Matahari Department store Nagoya Hill Batam. The transaction data on the store that is still processed does not use a method that causes the processing of product sales data to be less effective and less efficient. Seeing from the number of transactions, a system is needed to predict the sale of the best-selling product as long as it can determine the correct stock for the products sold and can increase the profit, sale and purchase of the product. This research was conducted with the aim of applying data mining methods using the Naive Bayes Classifier algorithm to select the best-selling products in the outlet of the Matahari Nagoya Hill Batam Department Store. By using the collected sales data, the system is expected to increase profits steadily and avoid shortages of product stocks. Through analysis using the Naive Bayes Classifier method, the study achieved an accuracy of 67% and obtained a bag sales result to be the best-selling sale during January 2023 through March 2023 with a sales percentage of 20%.
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
数据挖掘方法使用天真BAYES算法选择最畅销产品
今天的技术进步可以用来将数据处理成更有用的信息。在数据收集中,信息收集对利润最大化和制定营销策略特别有用。增加利润的一种方法是使用数据挖掘技术来帮助商业行为者做出有关股票、增加利润等方面的决策。Matahari百货公司是印尼最大的零售平台,其中一家位于巴淡岛的零售商店是Matahari百货公司名古屋山巴淡岛。仍在处理的商店中的交易数据不会使用导致产品销售数据处理效率降低的方法。从交易的数量来看,只要能确定销售产品的正确库存,并能增加产品的利润、销量和购买量,就需要一个系统来预测最畅销产品的销售情况。本研究的目的是应用数据挖掘方法,使用朴素贝叶斯分类器算法来选择Matahari名古屋山巴淡百货公司的出口最畅销的产品。通过使用收集到的销售数据,该系统有望稳步增加利润,避免产品库存短缺。通过使用朴素贝叶斯分类器方法进行分析,该研究的准确率达到67%,并获得2023年1月至2023年3月期间最畅销的包销售结果,销售百分比为20%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
IMPLEMENTASI DATA MINING MENGGUNAKAN ALGORITMA APRIORI UNTUK MENINGKATKAN POLA PENJUALAN ANALISIS RISIKO ERGONOMI PENJAHIT BERDASARKAN JENIS KELAMIN DI KOTA BATAM ANALISIS DAN DETEKSI MALWARE PADA PROTOKOL JARINGAN MENGGUNAKAN METODE MALWARE ANALISIS DINAMIS DAN MALWARE ANALISIS STATIS ANALISIS POLA PEMBELIAN KONSUMEN MENGGUNAKAN ALGORITMA APRIORI PERANCANGAN SISTEM APLIKASI PENJUALAN SPAREPART MOTOR BERBASIS ANDROID
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1