Microbial Technique to Treat Recycled Aggregates from Construction Waste for its Effective reutilization in Concrete

IF 1 4区 环境科学与生态学 Q4 ENVIRONMENTAL SCIENCES Global Nest Journal Pub Date : 2023-10-09 DOI:10.30955/gnj.005313
{"title":"Microbial Technique to Treat Recycled Aggregates from Construction Waste for its Effective reutilization in Concrete","authors":"","doi":"10.30955/gnj.005313","DOIUrl":null,"url":null,"abstract":"<p>Excessive consumption of natural resources for concrete production results in the diminution of conventional resources, leading to the scarcity of construction materials. Perhaps, the dumping of construction wastes increases the municipal wastes ensuing in disposal problems. The dumped construction wastes act as a hazard and disturb the integrity of the environment. Nevertheless, the requirement for aggregates in the construction sector increases, hastily alarming the researchers in their search of sustainable alternative materials. The recycling of construction waste to produce recycled coarse aggregate (RCA) as a suitable alternative to natural coarse aggregates (NCA) conserves natural resources and promotes sustainability in construction. However, the quality of recycled coarse aggregate was inferior compared to natural coarse aggregates due to the adherence of mortar. This paper investigates the sustainable use of Bacillus subtilis with different concentrations to enhance the quality of RCA. The concrete mixes manufactured with optimized BRCA were tested for their mechanical and durability properties. It could be observed that the strength of BRAC was enhanced by 12.63% relative to NAC, and the durability properties such as water absorption, chloride penetration and carbonation of BRAC were reduced by 18.53%, 16.52% and 20% relative to RAC. Microstructural studies through SEM and XRD revealed the deposition of CaCO3 on the micro-pores of RCA, and that improves the properties of the concrete.</p>&#x0D;","PeriodicalId":55087,"journal":{"name":"Global Nest Journal","volume":"35 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-10-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"Global Nest Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.30955/gnj.005313","RegionNum":4,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

Abstract

Excessive consumption of natural resources for concrete production results in the diminution of conventional resources, leading to the scarcity of construction materials. Perhaps, the dumping of construction wastes increases the municipal wastes ensuing in disposal problems. The dumped construction wastes act as a hazard and disturb the integrity of the environment. Nevertheless, the requirement for aggregates in the construction sector increases, hastily alarming the researchers in their search of sustainable alternative materials. The recycling of construction waste to produce recycled coarse aggregate (RCA) as a suitable alternative to natural coarse aggregates (NCA) conserves natural resources and promotes sustainability in construction. However, the quality of recycled coarse aggregate was inferior compared to natural coarse aggregates due to the adherence of mortar. This paper investigates the sustainable use of Bacillus subtilis with different concentrations to enhance the quality of RCA. The concrete mixes manufactured with optimized BRCA were tested for their mechanical and durability properties. It could be observed that the strength of BRAC was enhanced by 12.63% relative to NAC, and the durability properties such as water absorption, chloride penetration and carbonation of BRAC were reduced by 18.53%, 16.52% and 20% relative to RAC. Microstructural studies through SEM and XRD revealed the deposition of CaCO3 on the micro-pores of RCA, and that improves the properties of the concrete.

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
微生物技术处理建筑垃圾再生骨料,使其在混凝土中有效再利用
混凝土生产对自然资源的过度消耗导致常规资源的减少,导致建筑材料的稀缺性。也许,建筑垃圾的倾倒增加了城市垃圾的处置问题。倾倒的建筑垃圾是一种危害,破坏了环境的完整性。然而,建筑部门对骨料的需求增加了,这使研究人员急于寻找可持续的替代材料。回收建筑废物生产再生粗骨料作为天然粗骨料的合适替代品,既可节约自然资源,又可促进建筑的可持续发展。但由于砂浆的黏附,再生粗骨料的质量不如天然粗骨料。本文研究了不同浓度枯草芽孢杆菌的可持续利用,以提高RCA的质量。用优化后的BRCA配制的混凝土对其力学性能和耐久性进行了测试。结果表明,BRAC的强度比NAC提高了12.63%,吸水率、氯渗透率、碳化率等耐久性性能分别比RAC降低了18.53%、16.52%和20%。通过SEM和XRD的微观结构研究发现,CaCO3沉积在RCA的微孔上,改善了混凝土的性能。</p>
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
Global Nest Journal
Global Nest Journal 环境科学-环境科学
CiteScore
1.50
自引率
9.10%
发文量
100
审稿时长
>12 weeks
期刊介绍: Global Network of Environmental Science and Technology Journal (Global NEST Journal) is a scientific source of information for professionals in a wide range of environmental disciplines. The Journal is published both in print and online. Global NEST Journal constitutes an international effort of scientists, technologists, engineers and other interested groups involved in all scientific and technological aspects of the environment, as well, as in application techniques aiming at the development of sustainable solutions. Its main target is to support and assist the dissemination of information regarding the most contemporary methods for improving quality of life through the development and application of technologies and policies friendly to the environment
期刊最新文献
Trace Metals Pollution in Ambient Air of Urban and Rural Coastal Environments Diatom records in sediments for eutrophication process of Lake Xian'nv, China since the mid-20th century Spatiotemporal variability of heavy metals concentration in an industrialized estuarine-bay ecosystem in Northern Persian Gulf Anaerobic Digestion of Corn Stover Pretreated with Sulfuric Acid in Different Soaking Durations Effect of coconut shell ash as an additive on the properties of green concrete
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1