MSPoint:基于多尺度分布分数的点云去噪网络

IF 1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC 激光与光电子学进展 Pub Date : 2023-01-01 DOI:10.3788/lop222402
胡豪 Hu Hao, 王琪冰 Wang Qibing, 陆佳炜 Lu Jiawei, 苏宏业 Su Hongye, 来见坤 Lai Jiankun, 肖刚 Xiao Gang
{"title":"MSPoint:基于多尺度分布分数的点云去噪网络","authors":"胡豪 Hu Hao, 王琪冰 Wang Qibing, 陆佳炜 Lu Jiawei, 苏宏业 Su Hongye, 来见坤 Lai Jiankun, 肖刚 Xiao Gang","doi":"10.3788/lop222402","DOIUrl":null,"url":null,"abstract":"激光扫描仪等设备直接收集到的原始点云通常会受到噪声的影响,这会影响后续的处理,如三维重建、语义分割等,因此点云去噪算法尤为重要。现有的点云去噪网络大多以噪声点与干净点的距离作为目标函数进行迭代训练,这可能导致点云聚集与异常值。针对以上问题,提出一种基于多尺度点云分布分数(即点云对数概率函数的梯度)的新型去噪网络multiscale score point(MSPoint)。MSPoint网络主要由两部分组成:特征提取模块和位移预测模块。在特征提取模块中输入点云的邻域,通过对数据添加多尺度噪声扰动加强MSPoint的抗噪性能,使提取到的特征具有更强的表达能力。位移预测模块根据分数估计单元预测的分数迭代学习噪声点的位移。在公开数据集上的实验结果表明,相比现有的方法,MSPoint有着更好的去噪效果以及更强的鲁棒性。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"94 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop222402","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

激光扫描仪等设备直接收集到的原始点云通常会受到噪声的影响,这会影响后续的处理,如三维重建、语义分割等,因此点云去噪算法尤为重要。现有的点云去噪网络大多以噪声点与干净点的距离作为目标函数进行迭代训练,这可能导致点云聚集与异常值。针对以上问题,提出一种基于多尺度点云分布分数(即点云对数概率函数的梯度)的新型去噪网络multiscale score point(MSPoint)。MSPoint网络主要由两部分组成:特征提取模块和位移预测模块。在特征提取模块中输入点云的邻域,通过对数据添加多尺度噪声扰动加强MSPoint的抗噪性能,使提取到的特征具有更强的表达能力。位移预测模块根据分数估计单元预测的分数迭代学习噪声点的位移。在公开数据集上的实验结果表明,相比现有的方法,MSPoint有着更好的去噪效果以及更强的鲁棒性。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
MSPoint:基于多尺度分布分数的点云去噪网络
激光扫描仪等设备直接收集到的原始点云通常会受到噪声的影响,这会影响后续的处理,如三维重建、语义分割等,因此点云去噪算法尤为重要。现有的点云去噪网络大多以噪声点与干净点的距离作为目标函数进行迭代训练,这可能导致点云聚集与异常值。针对以上问题,提出一种基于多尺度点云分布分数(即点云对数概率函数的梯度)的新型去噪网络multiscale score point(MSPoint)。MSPoint网络主要由两部分组成:特征提取模块和位移预测模块。在特征提取模块中输入点云的邻域,通过对数据添加多尺度噪声扰动加强MSPoint的抗噪性能,使提取到的特征具有更强的表达能力。位移预测模块根据分数估计单元预测的分数迭代学习噪声点的位移。在公开数据集上的实验结果表明,相比现有的方法,MSPoint有着更好的去噪效果以及更强的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
期刊最新文献
可产生任意偏振方向太赫兹波的光电导太赫兹辐射源 激光填粉焊接B340LA高强钢工艺特性研究 基于电光双光梳光谱的气体含量测量方法研究 Effective Slowing and Trapping of Cs Atoms in an Ultrahigh-Vacuum Apparatus 用于核酸现场检测的直轴型多通道光学检测系统
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1