基于深度学习的石油污染物三维荧光光谱识别技术研究

IF 1 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC 激光与光电子学进展 Pub Date : 2023-01-01 DOI:10.3788/lop221854
王忠东 Wang Zhongdong, 张云刚 Zhang Yungang, 张亮敬 Zhang Liangjing, 吴柳强 Wu liuqiang
{"title":"基于深度学习的石油污染物三维荧光光谱识别技术研究","authors":"王忠东 Wang Zhongdong, 张云刚 Zhang Yungang, 张亮敬 Zhang Liangjing, 吴柳强 Wu liuqiang","doi":"10.3788/lop221854","DOIUrl":null,"url":null,"abstract":"石油油品在一定的激发光照射下可产生相当强度的三维荧光光谱,是鉴别和分析石油污染物的重要依据。由于石油油品的荧光光谱特征复杂、数据庞大,不宜直接用数学模型描述,也不宜简单依靠人工观察分析。因此,根据深度学习的卷积神经网络(CNN)理论提出了一种直接利用石油油品原始荧光数据进行CNN建模的方法,利用其强大的非线性运算能力、自适应表示学习能力,自动隐性地从训练数据中进行特征学习,实现水环境中石油污染物种类识别。通过大量的荧光实验构建了石油油品(汽油、机油、柴油)的训练和验证光谱数据集,基于Python深度学习框架Keras建立了CNN模型,并对CNN模型在光谱数据集上进行了训练、验证与测试实验,实现了被测油品的种类判别。实验结果表明:该CNN模型对3种油品的训练集与验证集三维荧光光谱的分类准确率都达到了99.76%,综合测试分类准确率达到82.65%,对单物质分类准确率为100%,验证了三维荧光技术结合深度学习算法能够实现对石油油品准确可靠的判别分类,也为进一步研究基于深度学习的水环境污染物智能识别系统提供了技术支持,为环境检测提供了一种新思路与新方法。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"41 1","pages":"0"},"PeriodicalIF":1.0000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop221854","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 1

Abstract

石油油品在一定的激发光照射下可产生相当强度的三维荧光光谱,是鉴别和分析石油污染物的重要依据。由于石油油品的荧光光谱特征复杂、数据庞大,不宜直接用数学模型描述,也不宜简单依靠人工观察分析。因此,根据深度学习的卷积神经网络(CNN)理论提出了一种直接利用石油油品原始荧光数据进行CNN建模的方法,利用其强大的非线性运算能力、自适应表示学习能力,自动隐性地从训练数据中进行特征学习,实现水环境中石油污染物种类识别。通过大量的荧光实验构建了石油油品(汽油、机油、柴油)的训练和验证光谱数据集,基于Python深度学习框架Keras建立了CNN模型,并对CNN模型在光谱数据集上进行了训练、验证与测试实验,实现了被测油品的种类判别。实验结果表明:该CNN模型对3种油品的训练集与验证集三维荧光光谱的分类准确率都达到了99.76%,综合测试分类准确率达到82.65%,对单物质分类准确率为100%,验证了三维荧光技术结合深度学习算法能够实现对石油油品准确可靠的判别分类,也为进一步研究基于深度学习的水环境污染物智能识别系统提供了技术支持,为环境检测提供了一种新思路与新方法。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于深度学习的石油污染物三维荧光光谱识别技术研究
石油油品在一定的激发光照射下可产生相当强度的三维荧光光谱,是鉴别和分析石油污染物的重要依据。由于石油油品的荧光光谱特征复杂、数据庞大,不宜直接用数学模型描述,也不宜简单依靠人工观察分析。因此,根据深度学习的卷积神经网络(CNN)理论提出了一种直接利用石油油品原始荧光数据进行CNN建模的方法,利用其强大的非线性运算能力、自适应表示学习能力,自动隐性地从训练数据中进行特征学习,实现水环境中石油污染物种类识别。通过大量的荧光实验构建了石油油品(汽油、机油、柴油)的训练和验证光谱数据集,基于Python深度学习框架Keras建立了CNN模型,并对CNN模型在光谱数据集上进行了训练、验证与测试实验,实现了被测油品的种类判别。实验结果表明:该CNN模型对3种油品的训练集与验证集三维荧光光谱的分类准确率都达到了99.76%,综合测试分类准确率达到82.65%,对单物质分类准确率为100%,验证了三维荧光技术结合深度学习算法能够实现对石油油品准确可靠的判别分类,也为进一步研究基于深度学习的水环境污染物智能识别系统提供了技术支持,为环境检测提供了一种新思路与新方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
期刊最新文献
可产生任意偏振方向太赫兹波的光电导太赫兹辐射源 激光填粉焊接B340LA高强钢工艺特性研究 基于电光双光梳光谱的气体含量测量方法研究 Effective Slowing and Trapping of Cs Atoms in an Ultrahigh-Vacuum Apparatus 用于核酸现场检测的直轴型多通道光学检测系统
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:604180095
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1