基于DeeplabV3+网络的高分遥感影像分类

IF 0.9 4区 物理与天体物理 Q4 ENGINEERING, ELECTRICAL & ELECTRONIC 激光与光电子学进展 Pub Date : 2023-01-01 DOI:10.3788/lop222553
黄冬青 Huang Dongqing, 徐伟铭 Xu Weiming, 许文迪 Xu Wendi, 何小英 He Xiaoying, 潘凯祥 Pan Kaixiang
{"title":"基于DeeplabV3+网络的高分遥感影像分类","authors":"黄冬青 Huang Dongqing, 徐伟铭 Xu Weiming, 许文迪 Xu Wendi, 何小英 He Xiaoying, 潘凯祥 Pan Kaixiang","doi":"10.3788/lop222553","DOIUrl":null,"url":null,"abstract":"针对卷积神经网络在遥感影像分类时遇到的模型参数量过大和分类精度低等问题,在DeeplabV3+网络的基础上,将编码器中的深层特征提取器替换为轻量化网络MobilenetV2和Xception_65,将解码器结构改为逐层特征融合实现解码区上采样的细化,引入通道注意力模块加强编解码器之间的信息关联,引入多尺度监督实现感受野自适应。构建4种具有不同编解码结构的网络,在CCF数据集上对网络进行验证测试。实验结果表明,编码器采用Xception_65,解码器同时引入逐层连接、通道注意力模块和多尺度监督的MS-XDeeplabV3+网络在减少模型参数量、加快模型训练速度的同时能更细化地物的边缘信息,提高对道路、水体等线状地物和草地的分类精度,像素总体精度和Kappa系数分别达0.9122和0.8646,在遥感影像分类中效果最佳。","PeriodicalId":51502,"journal":{"name":"激光与光电子学进展","volume":"97 1","pages":"0"},"PeriodicalIF":0.9000,"publicationDate":"2023-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":null,"platform":"Semanticscholar","paperid":null,"PeriodicalName":"激光与光电子学进展","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3788/lop222553","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
引用次数: 0

Abstract

针对卷积神经网络在遥感影像分类时遇到的模型参数量过大和分类精度低等问题,在DeeplabV3+网络的基础上,将编码器中的深层特征提取器替换为轻量化网络MobilenetV2和Xception_65,将解码器结构改为逐层特征融合实现解码区上采样的细化,引入通道注意力模块加强编解码器之间的信息关联,引入多尺度监督实现感受野自适应。构建4种具有不同编解码结构的网络,在CCF数据集上对网络进行验证测试。实验结果表明,编码器采用Xception_65,解码器同时引入逐层连接、通道注意力模块和多尺度监督的MS-XDeeplabV3+网络在减少模型参数量、加快模型训练速度的同时能更细化地物的边缘信息,提高对道路、水体等线状地物和草地的分类精度,像素总体精度和Kappa系数分别达0.9122和0.8646,在遥感影像分类中效果最佳。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
基于DeeplabV3+网络的高分遥感影像分类
针对卷积神经网络在遥感影像分类时遇到的模型参数量过大和分类精度低等问题,在DeeplabV3+网络的基础上,将编码器中的深层特征提取器替换为轻量化网络MobilenetV2和Xception_65,将解码器结构改为逐层特征融合实现解码区上采样的细化,引入通道注意力模块加强编解码器之间的信息关联,引入多尺度监督实现感受野自适应。构建4种具有不同编解码结构的网络,在CCF数据集上对网络进行验证测试。实验结果表明,编码器采用Xception_65,解码器同时引入逐层连接、通道注意力模块和多尺度监督的MS-XDeeplabV3+网络在减少模型参数量、加快模型训练速度的同时能更细化地物的边缘信息,提高对道路、水体等线状地物和草地的分类精度,像素总体精度和Kappa系数分别达0.9122和0.8646,在遥感影像分类中效果最佳。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
求助全文
约1分钟内获得全文 去求助
来源期刊
CiteScore
1.60
自引率
50.00%
发文量
18006
期刊介绍: Laser & Optoelectronics Progress, the first laser and optoelectronics journal published in China. The main columns include general, lasers and laser optics, fiber optics and optical communications, optical design and fabrication, materials, image processing, imaging systems, optical devices, remote sensing and sensors, atmospheric optics and oceanic optics, diffraction and gratings, atomic and molecular physics, detectors, thin films, ultrafast optics, etc. The journal is included in ESCI, INSPEC, Scopus, CSCD, Chinese Core Journals, Chinese Science and Technology Core Journals, and T2 level of the Classified Catalogue of High Quality Science and Technology Journals in Optical Engineering and Optical Fields, and other databases.
期刊最新文献
可产生任意偏振方向太赫兹波的光电导太赫兹辐射源 激光填粉焊接B340LA高强钢工艺特性研究 基于电光双光梳光谱的气体含量测量方法研究 Effective Slowing and Trapping of Cs Atoms in an Ultrahigh-Vacuum Apparatus 用于核酸现场检测的直轴型多通道光学检测系统
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1